(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)
遥感图像识别:
专业词汇:
kernel:卷积
目录
遥感图像分类 1.1 LeNet-5
视频来源:
任务:使用什么网络实现遥感图像的分类
LeNet-5结构:
遥感图像分类 1.2 AlexNet(冠军)
视频来源:
1主要i内容:
AlexNet结构:
遥感图像分类 1.3 VGGNet(亚军)
视频来源:
主要内容:
VGGNet结构:
遥感图像分类 1.4 GoogLeNet
视频来源:
GoogLeNet结构:
遥感图像分类 1.5 ResNet
视频来源:
ResNet结构:
遥感图像分类 1.1 LeNet-5
视频来源:
遥感图像分类 1.1 LeNet-5_哔哩哔哩_bilibili
任务:使用什么网络实现遥感图像的分类
- 基于MNIST的遥感数据集
- LeNet-5搭建,训练,保存
- LeNet-5调用和预测
LeNet-5结构:

基于MNIST的遥感数据集:
数据集放在了评论区,用来进行验证
从CSV文件中载入数据(数据采集):
- 读取CSV 文件
- 转换成数组
- 读取图片
- 读取标签
- 维度改变 4:05
总结:
- 数据采集 :
按照列读取CSV 文件 标签信息 图片信息 维度处理 (和之前一样) - 建立模型:
和上节课一样 - 模型训练:
增加轮数以达到更好的训练效果(max=80%) - 模型测试:
通过画图的方式,可视化正确率,遇到瓶颈
对预测的位置信息转换成对应名称(通过数据方式实现)
遥感图像分类 1.2 AlexNet(冠军)
视频来源:
遥感图像分类 1.2 AlexNet_哔哩哔哩_bilibili
1主要i内容:
- 遥感图像的载入
- AlexNet结构与创新
- AlexNet搭建,训练,预测
AlexNet结构:

去网上找遥感图片
载入数据:
- 按照路径读取(相对路径)
- 预处理
归一化——水平翻转4:04——批大小——随机——尺寸——独热编码 - 基础知识:
步长 Stride & 加边 Padding &参数 Param
卷积后尺寸=(输入图像大小-卷积核大小+加边像素数)/步长 +1
Tensorflow默认:Padding='valid'(丢弃),strides=1
设置:Padding=same':保证输出和输出尺寸不变,自动设置填充
参数:
卷积层:(卷积参数(卷积核各部分)+偏置参数)*卷积核的个数
池化层:不需要训练参数
全连接层:神经元连接权重+偏置参数
模型搭建:ReLU&Dropout
模型训练:learning_rate&batch_size
遥感图像分类 1.3 VGGNet(亚军)
视频来源:
遥感图像分类 1.3 VGGNet_哔哩哔哩_bilibili
主要内容:
- VGGNet 结构与创新
- VGGNet训练与预测
- 迁移学习训练VGGNet
VGGNet结构:

数据载入方式和上节课一样
感受视野 Receptive Field
定义:输出层一个元素对应输入层区域的大小。
计算:感受视野=(上一层感受视野-1)*步长 +卷积核尺寸
VGGNet提出:
堆叠两个3*3卷积核替代一个5*5卷积核
堆叠三个3*3卷积核替代一个7*7卷积核。
相同感受视野,训练参数量减少。
迁移学习:
遥感图像分类 1.4 GoogLeNet
视频来源:
遥感图像分类 1.4 GoogLeNet_哔哩哔哩_bilibili
- GoogLeNet结构
- GoogLeNet创新
- GoogLeNet训练与预测
GoogLeNet结构:

Inception模块:
输入为28*28*192(*不考虑偏置项)
直接32个5X5 卷积参数:5*5*192*32=105600
先使用16个1X1卷积降维,再使用32个5X5 卷积参数:1*1*192*16+5*5*16*32=15872
Padding问题:
TensorFlow中 padding= 'same'
输出图像的长和宽=输入图像/步长(结果向上取整)
*如果步长为1,卷积、池化操作不改变图像的长宽。
参考NIN网络:
使用全局平均化代替全连接层,避免全连接层带来的大量训练参数
遥感图像分类 1.5 ResNet
视频来源:
遥感图像分类 1.5 ResNet_哔哩哔哩_bilibili
ResNet结构:

Batch Normalization 批量归一化:
每一层输入的时候,先做一个归一化处理,然后在进入网络的下一层
避免梯度消失和爆炸,训练更稳定
退化现象(不同于过拟合):
网络层数越多,训练集loss逐渐下降,之后趋于饱和,继续增加网络深度的话,训练集loss反而更大
捷径分支:
模型搭建:
残差模块:
最后附上本人粗浅的见解,感觉以上这五个网络结构可以看成处理(机器学习图像)/(遥感图像)分类的五种(数学方法)/(函数方法)
相关文章:
(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)
遥感图像识别: 专业词汇: kernel:卷积 目录 遥感图像分类 1.1 LeNet-5 视频来源: 任务:使用什么网络实现遥感图像的分类 LeNet-5结构: 遥感图像分类 1.2 AlexNet(冠军) 视频…...
数据集笔记:NUSMods API
1 介绍 NUSMods API 包含用于渲染 NUSMods 的数据。这些数据包括新加坡国立大学(NUS)提供的课程以及课程表的信息,还包括上课地点的详细信息。 可以使用并实验这些数据,它们是从教务处提供的官方 API 中提取的。 该 API 由静态的…...
HTML元素,标签到底指的哪块部分?单双标签何时使用?
1. 标签(Tag) vs 元素(Element) 标签(Tag) 标签是 HTML 中用于定义元素的符号,用尖括号 < > 包裹。例如 <img> 是标签。元素(Element) 元素是由 标签 内容…...
基于ai技术的视频生成工具
一、通用型AI视频生成工具 腾讯智影 特点:支持数字人播报、文字转视频,提供免费模板和素材库,登录即送5分钟免费时长,每日签到可兑换额外额度。 限制:免费版分辨率较低,部分高级功能需付费。 LunaAI.vid…...
【Java 后端】Restful API 接口
Restful API 接口 REST:Representational State Transfer,表现层(前端的视图页面和后端的控制层)资源状态转移。 一种软件架构的风格(格式) RESTful 是目前最流行的互联网软件架构,如果一个架…...
Matlab地图绘制教程第2期—水陆填充图
上一期分享了海岸线图的绘制方法: 本着由浅入深的理念,本期再来分享一下水陆填充图的绘制方法。 先来看一下成品效果: 特别提示:Matlab地图绘制教程系列,旨在降低大家使用Matlab进行地图类科研绘图的门槛,…...
企业知识库搭建:14款开源与免费系统选择
本文介绍了以下14 款知识库管理系统:1.Worktile;2.PingCode;3.石墨文档; 4. 语雀; 5. 有道云笔记; 6. Bitrix24; 7. Logseq等。 在如今的数字化时代,企业和团队面临着越来越多的信息…...
【Linux系统】—— 冯诺依曼体系结构与操作系统初理解
【Linux系统】—— 冯诺依曼体系结构与操作系统初理解 1 冯诺依曼体系结构1.1 基本概念理解1.2 CPU只和内存打交道1.3 为什么冯诺依曼是这种结构1.4 理解数据流动 2 操作系统2.1 什么是操作系统2.2 设计OS的目的2.3 操作系统小知识点2.4 如何理解"管理"2.5 系统调用和…...
Android内存优化指南:从数据结构到5R法则的全面策略
目录 一、APP 内存限制 二、内存的三大问题 2.1、内存抖动(Memory Churn) 2.1.1 频繁创建短生命周期对象 2.1.2 系统API或第三方库的不合理使用 2.1.3 Handler使用不当 2.2、内存泄漏(Memory Leak) 2.2.1 静态变量持有Activity或Context引用 2.2.2 未取消的回调或…...
机器学习:线性回归,梯度下降,多元线性回归
线性回归模型 (Linear Regression Model) 梯度下降算法 (Gradient Descent Algorithm) 的数学公式 多元线性回归(Multiple Linear Regression)...
Linux上用C++和GCC开发程序实现两个不同MySQL实例下单个Schema稳定高效的数据迁移到其它MySQL实例
设计一个在Linux上运行的GCC C程序,同时连接三个不同的MySQL实例,其中两个实例中分别有两个Schema的表结构分别与第三实例中两个Schema个结构完全相同,同时复制两个实例中两个Schema里的所有表的数据到第三个实例中两个Schema里,使…...
RabbitMQ系列(一)架构解析
RabbitMQ 架构解析 RabbitMQ 是一个基于 AMQP 协议的开源消息中间件,其核心架构通过多组件协作实现高效、可靠的消息传递。以下是其核心组件与协作流程的详细说明: 一、核心组件与功能 Broker(消息代理服务器) RabbitMQ 服务端核…...
XSL 语言:XML 样式表的语言基础与应用
XSL 语言:XML 样式表的语言基础与应用 引言 XSL(Extensible Stylesheet Language)是一种专门用于XML文档样式的语言,它允许用户定义XML文档的格式、布局和外观。XSL是XML技术家族中的重要组成部分,与XML和XPATH等语言共同构成了处理和格式化XML文档的强大工具集。本文将…...
【计算机网络】常见tcp/udp对应的应用层协议,端口
TCP 和 UDP 对应的常见应用层协议 📌 基于 TCP 的应用层协议 协议全称用途默认端口HTTPHyperText Transfer Protocol超文本传输协议80HTTPSHTTP Secure加密的超文本传输协议443FTPFile Transfer Protocol文件传输协议(20 传输数据,21 控制连…...
ExpMoveFreeHandles函数分析和备用空闲表的关系
第一部分:ExpMoveFreeHandles和备用空闲表的关系 ULONG ExpMoveFreeHandles ( IN PHANDLE_TABLE HandleTable ) { ULONG OldValue, NewValue; ULONG Index, OldIndex, NewIndex, FreeSize; PHANDLE_TABLE_ENTRY Entry, FirstEntry; EXHAND…...
微服务学习(1):RabbitMQ的安装与简单应用
目录 RabbitMQ是什么 为什么要使用RabbitMQ RabbitMQ的安装 RabbitMQ架构及其对应概念 队列的主要作用 交换机的主要作用 RabbitMQ的应用 通过控制面板操作(实现收发消息) RabbitMQ是什么 RabbitMQ是一个开源的消息队列软件(消息代理…...
基于javaweb的SSM+Maven幼儿园管理系统设计和实现(源码+文档+部署讲解)
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论…...
企业级本地知识库部署指南(Windows优化版)
一、环境准备 1. 系统优化 # 启用WSL2(需Windows 10 2004或Windows 11) dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart dism.exe /online /enable-feature /featurename:VirtualMachinePlatform …...
5. Nginx 负载均衡配置案例(附有详细截图说明++)
5. Nginx 负载均衡配置案例(附有详细截图说明) 文章目录 5. Nginx 负载均衡配置案例(附有详细截图说明)1. Nginx 负载均衡 配置实例3. 注意事项和避免的坑4. 文档: Nginx 的 upstream 配置技巧5. 最后: 1. Nginx 负载均衡 配置实例 需求说明/图解 windows 浏览器输…...
Redis---缓存穿透,雪崩,击穿
文章目录 缓存穿透什么是缓存穿透?缓存穿透情况的处理流程是怎样的?缓存穿透的解决办法缓存无效 key布隆过滤器 缓存雪崩什么是缓存雪崩?缓存雪崩的解决办法 缓存击穿什么是缓存击穿?缓存击穿的解决办法 区别对比 在如今的开发中&…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
