当前位置: 首页 > news >正文

数据结构(初阶)(三)----单链表

单链表

概念

概念:链表是⼀种物理存储结构上⾮连续、⾮顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。

结点

与顺序表不同的是,链表的结构类似于带车头的火车车厢,,链表的每个车厢都是独立申请下来的空间,每个车厢被叫做结点。

结点由当前结点要保存的数据保存下一个节点的地址(指针变量)。

图中指针变量 plist保存的是第⼀个结点的地址,我们称plist此时“指向”第⼀个结点,如果我们希望plist“指向”第⼆个结点时,只需要修改plist保存的内容为0x0012FFc8

链表中每个结点都是独⽴申请的(即需要插⼊数据时才去申请⼀块结点的空间),我们需要通过指针 变量来保存下⼀个结点位置才能从当前结点找到下⼀个结点

在这里插入图片描述

在这里插入图片描述

链表的性质

链表在逻辑上是连续的,在物理结构上不一定连续

结点一般是从堆上申请的

从堆上申请来的空间,是按照⼀定策略分配出来的,每次申请的空间可能连续,可能不连续

定义链表的结构实际上就是定义链表中结点结构

每个结点对应的结构体代码:

typedef int SLTDataType;//因为我们在事先并不确定数据的类型,所以需要定义一下
typedef truct SListNode
{SLTDataType data;//结点要保存的数据struct SListNode* next;//指向下一个结点的指针,定义的数据类型是结点类型
}SLTNode;//定义全局变量

当我们想要保存一个数据时,实际上是向操作系统申请一块内存,这块内存不仅要保存数据,也要保存指向下一个结点的地址(当下一个结点为NULL时,地址为NULL)

当我们想要从第一个节点走向最后一个结点时,只需要在当前结点拿上下⼀个结点的地址就可以了。

链表的打印

void SLTPrint(SLTNode* phead)
{SLTNode* pcur = phead;//pcur存储的是当前的结点while (pcur)//等价于pcur != NULL{printf("%d-> ",pcur->data);pcur = pcur->next;}//走到这里,说明pcur == NULL,那么直接打印printf("NULL\n");
}

单链表的实现

创建三个文件分别是SList.h和SList.c和test.c

SList.h用来包含所需头文件,声明函数

SList.c用来定义函数,实现方法

test.c用来测试我们想要实现的功能

这里使用的是VS2022 win11环境

手动构造链表

SList.h
#pragma once
#include<stdio.h>
#include<stdlib.h>typedef int SLTDataType;//定义数据类型
typedef struct SListNode
{SLTDataType data;//定义下一个结点的地址,类型是struct SListNodestruct SListNode* next;
}SLTNode;//定义全局变量//打印链表
void SListPrint(SLTNode* phead);
SList.c
#define _CRT_SECURE_NO_WARNINGS
#include"SList.h"//打印链表
void SListPrint(SLTNode* phead)
{//创建pcur存储phead的地址,直接用phead也可以//这里是因为再次使用第一个结点时,还可以找到,不会影响后续的使用SLTNode* pcur = phead;//判断当前结点是否为NULL,等价于pcur != NULLwhile (pcur){//结点不为NULL,打印当前节点数据printf("%d -> ",pcur->data);//将下一个结点的地址赋值给pcurpcur = pcur->next;}//走到这里说明pcur == NULL,直接打印NULLprintf("NULL\n");
}
test.c
#define _CRT_SECURE_NO_WARNINGS
#include"SList.h"//手动构造链表
void test1()
{//为结点申请内存,大小为结构体大小//node1来接收,类型为SLTNode*,其他同理SLTNode* node1 = (SLTNode*)malloc(sizeof(SLTNode));SLTNode* node2 = (SLTNode*)malloc(sizeof(SLTNode));SLTNode* node3 = (SLTNode*)malloc(sizeof(SLTNode));SLTNode* node4 = (SLTNode*)malloc(sizeof(SLTNode));//在结点中放入要存储的数据node1->data = 1;node2->data = 2;node3->data = 3;node4->data = 4;//在结点中放入指向下一个结点的地址,如果是尾结点,则为NULLnode1->next = node2;node2->next = node3;node3->next = node4;node4->next = NULL;//打印链表看看效果//将首结点的地址给plist,传给实现打印的函数SLTNode* plist = node1;SListPrint(plist);
}int main()
{test1();return 0;
}

单链表实现

尾插

//向操作系统申请一个新结点
SLTNode* SLTBuyNode(SLTDataType x)
{SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));if (newnode == NULL){perror("malloc");exit(1);}//成功newnode->data = x;newnode->next = NULL;return newnode;
}//尾插
//其实在链表为NULL的情况下,不需要再改变头结点的内容,所以也可以使用SLTNode* pphead
void SLTPushBack(SLTNode** pphead, SLTDataType x)
{//向操作系统申请一个新结点SLTNode* newnode = SLTBuyNode(x);//链表为空,phead直接指向newNodeif (*pphead == NULL){*pphead = newnode;}//链表不为空,找尾节点,将尾节点和新节点连接起来else{SLTNode* ptail = *pphead;while (ptail->next != NULL){ptail = ptail->next;}//此时有:ptail->next == NULLptail->next = newnode;}
}

尾删

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

普遍情况是有多个结点,思路是:

1,找到尾结点

2,将尾结点的前驱结点置为空,再将尾结点释放并置空

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

特殊情况是,只有一个结点,思路是:

将唯一一个结点,也就是头结点释放并置空

//尾删
void SLTPopBack(SLTNode** phead)
{//二级指针不为空,链表不为空assert(phead && *phead);//在只有一个结点的情况下,prev = NULL,所以在下面对空指针的操作就是不合法的,//所以此时要分离出来,特殊处理,之后我们再测试assert断言就发挥了作用//注意*的优先级是低于->的,所以需要加上括号if ((*phead)->next == NULL){free(*phead);*phead = NULL;}//此时是结点个数大于一的情况else {SLTNode* prev = NULL;SLTNode* ptail = *phead;while (ptail->next){prev = ptail;ptail = ptail->next;}prev->next = NULL;free(ptail);ptail = NULL;}
}

头插

//头插
void SLTPushFront(SLTNode** pphead, SLTDataType x)
{SLTNode* newnode = SLTBuyNode(x);newnode->next = *pphead;*pphead = newnode;
}

头删

头删时,只需要将头结点的next结点保存起来,然后将原来的头结点释放,最后将next结点变成新的头结点即可。

//头删
void SLTPopFront(SLTNode** phead)
{assert(phead && *phead);//经过分析,在只有一个结点和多个结点的情况时,都是符合预期的,所以不必分离讨论SLTNode* next = (*phead)->next;free(*phead);*phead = next;}

查找

如果只是在链表中查找数据,那么就不会修改,只需传一级指针和要查找的数据,

而返回值则是所查找到的结点

//查找
SLTNode* SLTFind(SLTNode* phead, SLTDataType x)
{//创建pcur来遍历链表SLTNode* pcur = phead;//当结点不为空,进入循环while (pcur){if (pcur->data == x){return pcur;}pcur = pcur->next;}//没有找到return NULL;
}

指定位置pos之前插入

既然是插入数据,那么就要对链表进行修改,需要传址调用,要传二级指针,结点pos,和数据x

//指定位置pos之前插入
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{assert(pphead && pos);//如果pos的位置就是头结点,那么就相当于头插if (pos == *pphead){//头插SLTPushFront(pphead, x);}else{//创建新结点SLTNode* newnode = SLTBuyNode(x);//创建prev记录pos的前驱结点SLTNode* prev = *pphead;while (prev->next != pos){prev = prev->next;}//此时找到了posnewnode->next = pos;prev->next = newnode;}
}

指定位置之后pos插入

//指定位置之后pos插入
void SLTInsertAfter(SLTNode* pos, SLTDataType x)
{//在pos之后插入,就不需要知道头结点SLTNode* newnode = SLTBuyNode(x);newnode->next = pos->next;pos->next = newnode;
}

指定位置删除

//指定位置删除
void SLTErase(SLTNode** pphead, SLTNode* pos)
{assert(pphead && pos);if (pos == *pphead){//头删SLTPopFront(pphead);}else {SLTNode* del = *pphead;while (del->next != pos){del = del->next;}del->next = pos->next;free(pos);pos == NULL;}	
}

指定位置之后删除

//指定位置之后删除
void SLTEraseAfter(SLTNode* pos)
{assert(pos);SLTNode* del = pos->next;pos->next = del->next;
}

销毁链表

//销毁链表
void SListDestroy(SLTNode** pphead)
{assert(pphead);SLTNode* pcur = *pphead;while (pcur){SLTNode* next = pcur->next;free(pcur);pcur = next;}*pphead = NULL;
}

链表的分类

在这里插入图片描述
在这里插入图片描述

相关文章:

数据结构(初阶)(三)----单链表

单链表 概念 概念&#xff1a;链表是⼀种物理存储结构上⾮连续、⾮顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的。 结点 与顺序表不同的是&#xff0c;链表的结构类似于带车头的火车车厢&#xff0c;&#xff0c;链表的每个车厢都是独立…...

ChatGPT与DeepSeek:AI语言模型的巅峰对决

目录 引言 一、ChatGPT 与 DeepSeek 简介 &#xff08;一&#xff09;ChatGPT &#xff08;二&#xff09;DeepSeek 二、技术原理剖析 &#xff08;一&#xff09;ChatGPT 技术原理 &#xff08;二&#xff09;DeepSeek 技术原理 &#xff08;三&#xff09;技术原理对比…...

DaoCloud 亮相 2025 GDC丨开源赋能 AI 更多可能

2025 年 2 月 21 日至 23 日&#xff0c;上海徐汇西岸&#xff0c;2025 全球开发者先锋大会以 “模塑全球&#xff0c;无限可能” 的主题&#xff0c;围绕云计算、机器人、元宇宙等多元领域&#xff0c;探讨前沿技术创新、应用场景拓展和产业生态赋能&#xff0c;各类专业论坛、…...

人工智能之数学基础:线性代数中矩阵的运算

本文重点 矩阵的运算在解决线性方程组、描述线性变换等方面发挥着至关重要的作用。通过对矩阵进行各种运算,可以简化问题、揭示问题的本质特征。在实际应用中,我们可以利用矩阵运算来处理图像变换、数据分析、电路网络等问题。深入理解和掌握矩阵的运算,对于学习线性代数以…...

(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)

遥感图像识别&#xff1a; 专业词汇&#xff1a; kernel&#xff1a;卷积 目录 遥感图像分类 1.1 LeNet-5 视频来源&#xff1a; 任务&#xff1a;使用什么网络实现遥感图像的分类 LeNet-5结构&#xff1a; 遥感图像分类 1.2 AlexNet&#xff08;冠军&#xff09; 视频…...

数据集笔记:NUSMods API

1 介绍 NUSMods API 包含用于渲染 NUSMods 的数据。这些数据包括新加坡国立大学&#xff08;NUS&#xff09;提供的课程以及课程表的信息&#xff0c;还包括上课地点的详细信息。 可以使用并实验这些数据&#xff0c;它们是从教务处提供的官方 API 中提取的。 该 API 由静态的…...

HTML元素,标签到底指的哪块部分?单双标签何时使用?

1. 标签&#xff08;Tag&#xff09; vs 元素&#xff08;Element&#xff09; 标签&#xff08;Tag&#xff09; 标签是 HTML 中用于定义元素的符号&#xff0c;用尖括号 < > 包裹。例如 <img> 是标签。元素&#xff08;Element&#xff09; 元素是由 标签 内容…...

基于ai技术的视频生成工具

一、通用型AI视频生成工具 腾讯智影 特点&#xff1a;支持数字人播报、文字转视频&#xff0c;提供免费模板和素材库&#xff0c;登录即送5分钟免费时长&#xff0c;每日签到可兑换额外额度。 限制&#xff1a;免费版分辨率较低&#xff0c;部分高级功能需付费。 LunaAI.vid…...

【Java 后端】Restful API 接口

Restful API 接口 REST&#xff1a;Representational State Transfer&#xff0c;表现层&#xff08;前端的视图页面和后端的控制层&#xff09;资源状态转移。 一种软件架构的风格&#xff08;格式&#xff09; RESTful 是目前最流行的互联网软件架构&#xff0c;如果一个架…...

Matlab地图绘制教程第2期—水陆填充图

上一期分享了海岸线图的绘制方法&#xff1a; 本着由浅入深的理念&#xff0c;本期再来分享一下水陆填充图的绘制方法。 先来看一下成品效果&#xff1a; 特别提示&#xff1a;Matlab地图绘制教程系列&#xff0c;旨在降低大家使用Matlab进行地图类科研绘图的门槛&#xff0c;…...

企业知识库搭建:14款开源与免费系统选择

本文介绍了以下14 款知识库管理系统&#xff1a;1.Worktile&#xff1b;2.PingCode&#xff1b;3.石墨文档&#xff1b; 4. 语雀&#xff1b; 5. 有道云笔记&#xff1b; 6. Bitrix24&#xff1b; 7. Logseq等。 在如今的数字化时代&#xff0c;企业和团队面临着越来越多的信息…...

【Linux系统】—— 冯诺依曼体系结构与操作系统初理解

【Linux系统】—— 冯诺依曼体系结构与操作系统初理解 1 冯诺依曼体系结构1.1 基本概念理解1.2 CPU只和内存打交道1.3 为什么冯诺依曼是这种结构1.4 理解数据流动 2 操作系统2.1 什么是操作系统2.2 设计OS的目的2.3 操作系统小知识点2.4 如何理解"管理"2.5 系统调用和…...

Android内存优化指南:从数据结构到5R法则的全面策略

目录 一、APP 内存限制 二、内存的三大问题 2.1、内存抖动(Memory Churn) 2.1.1 频繁创建短生命周期对象 2.1.2 系统API或第三方库的不合理使用 2.1.3 Handler使用不当 2.2、内存泄漏(Memory Leak) 2.2.1 静态变量持有Activity或Context引用 2.2.2 未取消的回调或…...

机器学习:线性回归,梯度下降,多元线性回归

线性回归模型 (Linear Regression Model) 梯度下降算法 (Gradient Descent Algorithm) 的数学公式 多元线性回归&#xff08;Multiple Linear Regression&#xff09;...

Linux上用C++和GCC开发程序实现两个不同MySQL实例下单个Schema稳定高效的数据迁移到其它MySQL实例

设计一个在Linux上运行的GCC C程序&#xff0c;同时连接三个不同的MySQL实例&#xff0c;其中两个实例中分别有两个Schema的表结构分别与第三实例中两个Schema个结构完全相同&#xff0c;同时复制两个实例中两个Schema里的所有表的数据到第三个实例中两个Schema里&#xff0c;使…...

RabbitMQ系列(一)架构解析

RabbitMQ 架构解析 RabbitMQ 是一个基于 AMQP 协议的开源消息中间件&#xff0c;其核心架构通过多组件协作实现高效、可靠的消息传递。以下是其核心组件与协作流程的详细说明&#xff1a; 一、核心组件与功能 Broker&#xff08;消息代理服务器&#xff09; RabbitMQ 服务端核…...

XSL 语言:XML 样式表的语言基础与应用

XSL 语言:XML 样式表的语言基础与应用 引言 XSL(Extensible Stylesheet Language)是一种专门用于XML文档样式的语言,它允许用户定义XML文档的格式、布局和外观。XSL是XML技术家族中的重要组成部分,与XML和XPATH等语言共同构成了处理和格式化XML文档的强大工具集。本文将…...

【计算机网络】常见tcp/udp对应的应用层协议,端口

TCP 和 UDP 对应的常见应用层协议 &#x1f4cc; 基于 TCP 的应用层协议 协议全称用途默认端口HTTPHyperText Transfer Protocol超文本传输协议80HTTPSHTTP Secure加密的超文本传输协议443FTPFile Transfer Protocol文件传输协议&#xff08;20 传输数据&#xff0c;21 控制连…...

ExpMoveFreeHandles函数分析和备用空闲表的关系

第一部分&#xff1a;ExpMoveFreeHandles和备用空闲表的关系 ULONG ExpMoveFreeHandles ( IN PHANDLE_TABLE HandleTable ) { ULONG OldValue, NewValue; ULONG Index, OldIndex, NewIndex, FreeSize; PHANDLE_TABLE_ENTRY Entry, FirstEntry; EXHAND…...

微服务学习(1):RabbitMQ的安装与简单应用

目录 RabbitMQ是什么 为什么要使用RabbitMQ RabbitMQ的安装 RabbitMQ架构及其对应概念 队列的主要作用 交换机的主要作用 RabbitMQ的应用 通过控制面板操作&#xff08;实现收发消息&#xff09; RabbitMQ是什么 RabbitMQ是一个开源的消息队列软件&#xff08;消息代理…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

ubuntu中安装conda的后遗症

缘由: 在编译rk3588的sdk时&#xff0c;遇到编译buildroot失败&#xff0c;提示如下&#xff1a; 提示缺失expect&#xff0c;但是实测相关工具是在的&#xff0c;如下显示&#xff1a; 然后查找借助各个ai工具&#xff0c;重新安装相关的工具&#xff0c;依然无解。 解决&am…...

【java】【服务器】线程上下文丢失 是指什么

目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失&#xff1f; 直观示例说明 为什么上下文如此重要&#xff1f; 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程&#xff0c;代码应该如何实现 推荐方案&#xff1a;使用 ManagedE…...

设计模式域——软件设计模式全集

摘要 软件设计模式是软件工程领域中经过验证的、可复用的解决方案&#xff0c;旨在解决常见的软件设计问题。它们是软件开发经验的总结&#xff0c;能够帮助开发人员在设计阶段快速找到合适的解决方案&#xff0c;提高代码的可维护性、可扩展性和可复用性。设计模式主要分为三…...

HarmonyOS-ArkUI 自定义弹窗

自定义弹窗 自定义弹窗是界面开发中最为常用的一种弹窗写法。在自定义弹窗中&#xff0c; 布局样式完全由您决定&#xff0c;非常灵活。通常会被封装成工具类&#xff0c;以使得APP中所有弹窗具备相同的设计风格。 自定义弹窗具备的能力有 打开弹窗自定义布局&#xff0c;以…...