4070Super安装GPU版本pytorch记录
一些啐啐念。
安装LLaMA-Factory时遇到pytorch安装成CPU版本。网上找了一圈攻略,都是下载龟速。挂梯子也一样。最后在尝试用pytorch官网的生成的命令进行安装时,突然奇想,直接把安装日志显示的下载链接复制到浏览器下载,发现可以满速下载(需挂梯子)。(估计是代理的模式不能加速命令终端的下载??)
https://pytorch.org/get-started/locally/#windows-verification
注意1:以下教程安装的 CUDA 并非系统级 CUDA(System-Wide CUDA)。如果您不清楚什么是系统级 CUDA,请查看教程 NVIDIA CUDA Toolkit 与 PyTorch 安装中的 CUDA 的区别。
https://docs.infini-ai.com/posts/where-is-cuda.html
注意2:PyTorch 提供了带有 CUDA 和 cuDNN 支持的预编译版本。不需要另外再安装CUDA Toolkit 和cuDNN。
一、查看显卡CUDA版本
方法一:在cmd用命令查看
nvidia-smi
方法二:在NVIDIA控制面板查看系统信息-组件-3D设置。
二、在Pytorch官网获取安装命令行。
https://pytorch.org/get-started/locally/#windows-verification
卸载CPU版本并重新安装GPU版本的Pytorch
先卸载CPU版本。
pip uninstall torch
再粘贴官网的命令
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
https://download.pytorch.org/whl/cu126/torch-2.6.0%2Bcu126-cp310-cp310-win_amd64.whl#sha256=eda7768f0a2ad9da3513abf60ff5c13049e7e2ec74ed4cfcd4736a8523ab1f89
重新安装Pytorch。
pip install "E:\Python Wheel\torch-2.6.0+cu126-cp310-cp310-win_amd64.whl"
校验是否安装的GPU版本。
import torchprint(torch.cuda.is_available())
print("CUDA Version:", torch.version.cuda)
print(torch.cuda.get_device_name(0))
同时对LLaMA-Factory的基础安装做一下校验,输入以下命令获取训练相关的参数指导, 否则说明库还没有安装成功
# 安装命令
pip install -e .[metrics]
# 校验命令
llamafactory-cli train -h
# 模型训练全链路的一站式WebUI board
llamafactory-cli webui
总算配置完成了!!!
相关文章:

4070Super安装GPU版本pytorch记录
一些啐啐念。 安装LLaMA-Factory时遇到pytorch安装成CPU版本。网上找了一圈攻略,都是下载龟速。挂梯子也一样。最后在尝试用pytorch官网的生成的命令进行安装时,突然奇想,直接把安装日志显示的下载链接复制到浏览器下载,发现可以满…...

SpringBoot 端口配置
在Spring Boot中,配置应用程序的监听端口有多种方式。以下是常见的几种方法: 1. 通过 application.properties 或 application.yml 文件配置 application.properties server.port8081application.yml server:port: 8081如果没有显式配置 server.port…...

Linux网络相关概念和重要知识(1)(网络协议、网络通信)
目录 1.网络协议 (1)网络的起源 (2)为什么需要协议 (3)协议分层及其设计的解耦 (4)OSI定义的七层网络模型 ①分层及其功能 ②TCP/IP协议 ③传输层协议(TCP和UDP&a…...

go前后端开源项目go-admin,本地启动
https://github.com/go-admin-team/go-admin 教程 1.拉取项目 git clone https://github.com/go-admin-team/go-admin.git 2.更新整理依赖 go mod tidy会整理依赖,下载缺少的包,移除不用的,并更新go.sum。 # 更新整理依赖 go mod tidy 3.编…...

爬虫系列之发送请求与响应《一》
一、请求组成 1.1 请求方式:GET和POST请求 GET:从服务器获取,请求参数直接附在URL之后,便于查看和分享,常用于获取数据和查询操作 POST:用于向服务器提交数据,其参数不会显示在URL中,而是包含在…...

【数据挖掘】Matplotlib
Matplotlib 是 Python 最常用的 数据可视化 库之一,在数据挖掘过程中,主要用于 数据探索 (EDA)、趋势分析、模式识别 和 结果展示。 📌 1. Matplotlib 基础 1.1 安装 & 导入 # 如果未安装 Matplotlib,请先安装 # pip instal…...

AtCoder Beginner Contest 001(A - 積雪深差、B - 視程の通報、C - 風力観測、D - 感雨時刻の整理)题目翻译
由于我发现网上很少有人会发很久之前AtCoder Beginner Contes的题,所以我打算从AtCoder Beginner Contest 001开始写。大约两周一更,需要的可以订阅专栏,感谢支持Thanks♪(・ω・)ノ →题目讲解 A - 積雪深差 …...
安全测试之五:SQL Server注入漏洞几个实例
示例 1:在 GET 请求中测试 SQL 注入 最简单且有时最有效的情况是针对登录页面进行测试。当登录页面请求用户输入用户名和密码时,攻击者可以尝试输入以下字符串 “ or 11”(不包含双引号): https://vulnerable.web.ap…...

如何在Github上面上传本地文件夹
前言 直接在GitHub网址上面上传文件夹是不行的,需要一层一层创建然后上传,而且文件的大小也有限制,使用Git进行上传更加方便和实用 1.下载和安装Git Git - Downloads 傻瓜式安装即可 2.获取密钥对 打开自己的Github,创建SSH密钥&…...
多Agent协作智能系统
多Agent协作智能系统商业计划书 ——基于文心大模型的虚拟世界协作解决方案 第一章 执行摘要 1.1 项目背景 技术驱动:文心大模型4.0工具版的推出标志着AI从“问答”向“行动”的跨越,多Agent协作成为复杂任务自动化的核心范式。市场需求:据Global Market Insights报告,20…...

第J1周:ResNet50算法(Tensorflow版)
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目标 具体实现 (一)环境 语言环境:Python 3.10 编 译 器: PyCharm 框 架: TensorFlow (二)具体…...
炸裂函数explode
在 Apache Hive 中,"炸裂函数"通常指的是将复杂数据类型(如数组或映射)拆分成多行的函数。Hive 提供了几个内置函数来实现这种操作,其中最常用的是 explode 函数。 1. explode 函数 explode 函数用于将数组或映射类型…...

计算机视觉(opencv-python)之图像预处理基本操作(待补充)
图像预处理是计算机视觉任务中的关键步骤,它通过对原始图像进行处理,以提高后续图像分析、特征提取和识别的准确性。 示例图片 目录 常见图像处理方法 灰度化处理 法一 法二 说明 切片截取部分图像数据 cv2.cvtColor() 颜色空间转换 cv2.split(…...
数据结构秘籍(四) 堆 (详细包含用途、分类、存储、操作等)
1 引言 什么是堆? 堆是一种满足以下条件的树:(树这一篇可以参考我的文章数据结构秘籍(三)树 (含二叉树的分类、存储和定义)-CSDN博客) 堆中的每一个结点值都大于等于(…...

前端正则表达式完全指南:从入门到实战
文章目录 第一章:正则表达式基础概念1.1 什么是正则表达式1.2 正则表达式工作原理1.3 基础示例演示 第二章:正则表达式核心语法2.1 元字符大全表2.2 量词系统详解2.3 字符集合与排除 第三章:前端常用正则模式3.1 表单验证类3.1.1 邮箱验证3.1…...

【SRC实战】小游戏漏洞强制挑战
小游戏业务分析: 1、挑战成功加分,失败减分,存在段位机制,段位影响榜单排名 2、随机推荐挑战对象,随着等级升高不再推荐低等级玩家 3、玩家等级需要培养,培养需要道具,道具需要看广告/完成任务/付费 4、…...

细说 Java 集合之 Map
前言:本文基于JDK8 一、HashMap 1.1、hash方法 hash方法是map中的基石,后续很多操作都依赖hash方法; 下面是 jdk 7 中 hash方法,注意hashSeed 这个扰动因子,该值随机,所以同一个 key 每次调用hash方法后…...
【vue-echarts】——05.柱状图
文章目录 一、柱状图基本设置1.实现代码2.结果展示二、柱状图效果实现11.代码实现2.结果展示三、柱状图效果实现21.代码实现2.结果展示一、柱状图基本设置 柱状图:一种图表类型,因为构成是由一根一根类似柱子的数据条组合而成的坐标平面,所以命名为柱状 图。主要是用来反应对…...

【C】链式二叉树算法题1 -- 单值二叉树
leetcode链接https://leetcode.cn/problems/univalued-binary-tree/description/ 1 题目描述 如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。只有给定的树是单值二叉树时,才返回 true;否则返回 false。 示例 1࿱…...

C++11——智能指针和function库
目录 一、智能指针 1. std::unique_ptr(独占所有权指针) 2. std::shared_ptr(共享所有权指针) 3. std::weak_ptr(弱引用指针) 关键区别总结 最佳实践 基本用法 可封装的对象类型 核心特性 示例代码…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...