AIGC(生成式AI)试用 26 -- 跟着清华教程学习 - DeepSeek与AI幻觉
目标:继续学习
个人理解:
- AI幻觉:一本正经的胡说八道,你还觉得很道理,倾向于相信;事实不一致,指令(预期)与实际不一致:跑题
- 潜在风险:把AI带坏了;信息误导、过度信任导致的误判、失控、恶意利用,伦理不设限(比如回答中可以带脏话)
- 事实幻觉? -- 指AI生成的内容与现实世界事实相矛盾
- RAG:RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了检索和生成的技术,旨在提高语言模型生成内容的准确性和可靠性。RAG的核心思想是通过从外部知识库中检索相关信息,辅助模型生成更符合事实、更高质量的文本。
- AI幻觉,有风险,同样存在迷之创造,可能帮你打开新思路,关键是你如何提问和使用
DeepSeek与AI幻觉
- 什么是AI幻觉
- 学术:指模型生成与事实不符、逻辑断裂或脱离上下文的内容,本质是统计概率驱动的“合理猜测”
- 说人话:一本正经地胡说八道
- 事实性幻觉:指模型生成的内容与可验证的现实世界事实不一致
- 忠实性幻觉:指模型生成的内容与用户的指令或上下文不一致
提问:画一幅画:有山 、有河、有人、有飞机、有大炮、有亭子、有跑车、有雪、有瀑布 -- 这样的场景存在吗?

- DeepSeek为什么会产生幻觉
- 数据偏差:训练数据中的错误或片面性被模型放大(如医学领域过时论文导致错误结论)-- 错误引导
- 泛化困境:模型难以处理训练集外的复杂场景(如南极冰层融化对非洲农业的影响预测)-- 解构、重构偏离实际
- 知识固化:模型过度依赖参数化记忆,缺乏动态更新能力(如2023年后的事件完全虚构)-- 知识库更新不及时
- 意图误解:用户提问模糊时,模型易“自由发挥”(如“介绍深度学习”可能偏离实际需求)-- 自主意识?
- 主观较多的内容一般不易产生幻觉 -- 正确性评价缺少量化,多以描述为主(非数据化度量),结果与评价人喜好、所处的文化环境、语境有极大关系
- AI幻觉的潜在风险
> 信息污染风险:由于DeepSeek的低门槛和普及度高,大量AI生成内容涌入中文互联网,加剧了虚假信息传播的“雪球效应”,甚至污染下一代模型训练数据
> 信任危机:普通用户难以辨别AI内容的真实性,可能对医疗建议、法律咨询等专业场景的可靠性产生长期怀疑
> 控制欠缺:DeepSeek的对齐工作较其他闭源大模型有所欠缺,其开源特性也允许使用者随意使用,可能会成为恶意行为的工具
> 安全漏洞:若错误信息被用于自动化系统(如金融分析、工业控制),可能引发连锁反 - AI幻觉评测
- 不同模型、相同条目的通用提示语、相同应用场景 -- 人工判断、标注、交叉验证
- 不同模型、相同条目、随机抽取事实幻觉测试题 -- 事实幻觉?
- 推理逻辑能力强,幻觉率减少,同样AI会“处以为是”的“增强”问答 - 如何减缓AI幻觉
- 增加AI数据库的容量,使AI能从既有事实经验中得到更准确的结果
- 交叉验证,使用不同的AI工具相互验证结果 -- 同样要有自我的经验判断
- 提示词技巧:少开放性问题(推理性),多指令性问题;复杂问题简单化,问题层层递进、迭代,增加连界约束,增加结果验证、反思步骤
> RAG框架:利用检索增强生成(如先搜索权威数据库,再生成答案)
> 外部知识库:结合外部知识库,砍通用知识,强化垂直领域
> 精细训练:针对不同任务类型进行具体的微调或强化
> 评估工具:开发高效的自动化AI幻觉识别工具,对生成内容进行及时验证
- 应对AI幻觉
> 三角验证法:交叉比对多个AI回答或权威来源。
> 警惕“过度合理”:越细节丰富的回答越需谨慎(如AI虚构论文标题与作者)。-- 只回答你想听到的,过度迎合:需要关注提示词有意向引导
> 理解幻觉,享受幻觉:理解幻觉的特点和应对方法,享受幻觉带来的创意灵感 -- 创造性 - AI幻觉的创造力价
- 科学发现:从“错误”到突破的范式跃迁 -- AI的胡说八道带给我们的判断和新思考
- 文艺与设计:突破人类思维定式的“超现实引擎” -- 非量化的创新,带来不一样的天马行空,灵感
- 乐与游戏:创造新的视觉和听觉体验
- 技术创新:从“缺陷”到方法论的转化 -- 不一样的思考方式、不同角色和行业的思维融合
新型科研范式:科学界正构建“AI幻觉-实验验证-理论重构”的三阶段研究流程 -- 狂创意→理性筛选
提问:AI幻觉
| DeepSeek | 文心一言 |
| I幻觉(AI Hallucination)是指人工智能模型(尤其是生成模型,如大型语言模型或图像生成模型)在生成内容时,产生与输入不符、不符合事实或逻辑上不合理的输出。这种现象通常是因为模型在训练数据中学习到的模式不够准确,或者在生成过程中缺乏对真实世界的精确理解。 AI幻觉的表现
AI幻觉的原因
AI幻觉的影响
解决AI幻觉的方法
实际案例
AI幻觉是当前生成式AI面临的重要挑战之一,但随着技术的进步和方法的改进,这一问题有望逐步得到缓解。 | AI幻觉是指人工智能系统(尤其是自然语言处理模型)生成的内容与真实数据不符,或偏离用户指令的现象。以下是对AI幻觉的详细解析: 一、AI幻觉的类型 AI幻觉主要分为两类:事实幻觉和忠诚度幻觉。
二、AI幻觉的特点
三、AI幻觉的产生原因
四、如何避免AI幻觉
五、AI幻觉的实例 在实际应用中,AI幻觉可能导致严重的问题。例如,在商标侵权案件中,原告通过非正常搜索触发搜索引擎系统故障,导致大模型出现幻觉,认为被告的推广页面是“正确答案”,从而输出了貌似侵权的结果。这类案件的发生提醒我们,在使用AI技术时需要谨慎对待其生成的内容,并进行充分的核实和审查。 综上所述,AI幻觉是人工智能系统在使用过程中可能出现的一种现象。了解AI幻觉的类型、特点、产生原因以及避免方法对于提高AI技术的准确性和可靠性具有重要意义。 |
相关文章:
AIGC(生成式AI)试用 26 -- 跟着清华教程学习 - DeepSeek与AI幻觉
目标:继续学习 个人理解: - AI幻觉:一本正经的胡说八道,你还觉得很道理,倾向于相信;事实不一致,指令(预期)与实际不一致:跑题 - 潜在风险:把AI带坏了;信息误…...
Ubuntu 下 nginx-1.24.0 源码分析 - ngx_conf_add_dump
ngx_conf_add_dump 定义在src\core\ngx_conf_file.c static ngx_int_t ngx_conf_add_dump(ngx_conf_t *cf, ngx_str_t *filename) {off_t size;u_char *p;uint32_t hash;ngx_buf_t *buf;ngx_str_node_t *sn;ngx_conf_dump_t *cd;has…...
QEMU源码全解析 —— 内存虚拟化(23)
接前一篇文章:QEMU源码全解析 —— 内存虚拟化(22) 本文内容参考: 《趣谈Linux操作系统》 —— 刘超,极客时间 《QEMU/KVM源码解析与应用》 —— 李强,机械工业出版社 QEMU内存管理模型...
【北京迅为】itop-3568 开发板openharmony鸿蒙烧写及测试-第1章 体验OpenHarmony—烧写镜像
瑞芯微RK3568芯片是一款定位中高端的通用型SOC,采用22nm制程工艺,搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码,支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU,可用于轻量级人工…...
TypeScript 类型声明
在 TypeScript 开发中简化类型声明,可以通过以下 7 种实用技巧 显著提升效率: 一、善用类型推断(30% 场景免声明) // ❌ 冗余写法 const user: { name: string; age: number } { name: Jack, age: 25 };// ✅ 自动推断ÿ…...
从0搭建Tomcat第二天:深入理解Servlet容器与反射机制
在上一篇博客中,我们从0开始搭建了一个简易的Tomcat服务器,并实现了基本的HTTP请求处理。今天,我们将继续深入探讨Tomcat的核心组件之一——Servlet容器,并介绍如何使用反射机制动态加载和管理Servlet。 1. Servlet容器的作用 S…...
【Python】yield函数
【Python】yield函数 1. yield介绍2.yield基本用法3.yield高级用法3.1 yield send() 方法3.2 yield from方法3.3 yield 和yield from叠加处理复杂情况下的叠加 4.yield主要应用场景5.总结 python官方api地址 1. yield介绍 在Python中,yield关键字主要用于生成器函…...
Android13修改多媒体默认音量
干就完了! 设置音量为最大音量,修改如下: /framework/base/media/java/android/media/AudioSystem.java/** hide */public static int[] DEFAULT_STREAM_VOLUME new int[] {4, // STREAM_VOICE_CALL7, // STREAM_SYSTEM5, // STREAM_RING-5, // STREAM_MUSIC15, // STREAM…...
nginx+keepalived负载均衡及高可用
一、环境准备 主机名ip地址备注openEuler-1 192.168.121.11(本机) 192.168.131.11(心跳连接) nginx主负载均衡调度器openEuler-2 192.168.121.12(本机) 192.168.131.12(心跳连接) n…...
SP导入智能材质球
智能材质球路径 ...\Adobe Substance 3D Painter\resources\starter_assets\smart-materials 放入之后就会自动刷新...
Kotlin语言特性(一):空安全、扩展函数与协程
Kotlin语言特性(一):空安全、扩展函数与协程 一、引言 Kotlin作为Android官方推荐的开发语言,相比Java具有诸多现代化特性。本文将重点介绍Kotlin三个最具特色的语言特性:空安全、扩展函数和协程,并结合A…...
Sqlserver安全篇之_启用TLS即配置SQL Server 数据库引擎以加密连接
官方文档 https://learn.microsoft.com/zh-cn/sql/database-engine/configure-windows/configure-sql-server-encryption?viewsql-server-ver16 https://learn.microsoft.com/zh-cn/sql/database-engine/configure-windows/manage-certificates?viewsql-server-ver15&pre…...
Python 爬虫 – BeautifulSoup
Python 爬虫(Web Scraping)是指通过编写 Python 程序从互联网上自动提取信息的过程。 爬虫的基本流程通常包括发送 HTTP 请求获取网页内容、解析网页并提取数据,然后存储数据。 Python 的丰富生态使其成为开发爬虫的热门语言,特…...
【星云 Orbit-STM32F4】07. 用判断数据尾来接收据的串口通用程序框架
【星云 Orbit-STM32F4】用判断数据尾来接收一串数据的串口通用程序框架 摘要 本文介绍了一种基于STM32F407微控制器的串口数据接收通用程序框架。该框架通过判断数据尾来实现一串数据的完整接收,适用于需要可靠数据传输的应用场景。本文从零开始,详细讲…...
授权与认证之jwt(一)创建Jwt工具类
JWT的Token要经过加密才能返回给客户端,包括客户端上传的Tokn,后端项目需要验证核 实。于是我们需要一个WT工具类,用来加密Token和验证Token的有效性。 一、导入依赖 <dependency><groupId>com.auth0</groupId><artifactId>jav…...
Kubernetes Service服务发现dns之CoreDNS
文章目录 背景什么是Service、服务发现、Endpoint什么是CoreDNSCoreDNS 的工作原理 常用命令coredns 运行状态根据服务名,判断某个服务dns解析是否正常 背景 Kubernetes 集群内部的服务发现是微服务架构的核心基础,而 DNS 服务则是实现这一机制的关键组…...
Spring Boot 测试:单元、集成与契约测试全解析
一、Spring Boot 分层测试策略 Spring Boot 应用采用经典的分层架构,不同层级的功能模块对应不同的测试策略,以确保代码质量和系统稳定性。 Spring Boot 分层架构: Spring Boot分层架构 A[客户端] -->|HTTP 请求| B[Controller 层] …...
用友NC系列漏洞检测利用工具
声明!本文章所有的工具分享仅仅只是供大家学习交流为主,切勿用于非法用途,如有任何触犯法律的行为,均与本人及团队无关!!! 目录标题 YongYouNcTool启动及适配环境核心功能界面预览一键检测命令执…...
PostgreSQL 创建表格
PostgreSQL 创建表格 在数据库管理中,表格(Table)是数据存储的基础。PostgreSQL作为一款强大的开源对象关系型数据库管理系统(ORDBMS),创建表格是其最基本的功能之一。本文将详细讲解如何在PostgreSQL中创…...
一周一个Unity小游戏2D反弹球游戏 - 球的死区及球重生
前言 本文将实现当球弹到球板下方的死亡区域后,球会被重置到球板上发射点,并且重置物理状态的逻辑。 创建球的死亡区 之前创建的在屏幕下方的空气墙碰撞体可以将其Is Trigger勾选上,让其成为一个触发器,用来检测球是否进入该区域,如下。 创建一个脚本名为Deadzone…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
