AI人工智能机器学习之聚类分析
1、概要
本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。
2、聚类分析 - 简介
聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。
sklearn.cluster提供了多种聚类算法
- K均值聚类(K-Means Clustering),最常用的聚类算法之一,通过迭代找到 K 个簇的中心,并将样本分配给离其最近的中心,从而形成 K 个簇。
- 层次聚类(Agglomerative Clustering),通过构建一个树形结构(树状图)来表示数据的聚类过程,生成不同层次的聚类结果。
- DBSCAN(基于密度的聚类),通过测量数据点的密度来识别簇,能够发现任意形状的簇,并且可以有效处理噪声。
本篇,以三个示例讲述聚类分析使用方法:
- 示例1:对数据集进行K均值聚类分析
- 示例2:对数据集进行层次聚类分析
- 示例3:对数据集进行基于密度的聚类分析
本篇相关资料代码参见:AI人工智能机器学习相关知识资源及使用的示例代码
3、聚类分析
3.1、安装依赖
python安装机器学习库: pip install scikit-learn
3.2、示例1: 对数据集进行K均值聚类分析
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score# 生成样本数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 创建 KMeans 模型
kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init='auto')
kmeans.fit(X)# 获取聚类结果
y_kmeans = kmeans.predict(X)# 评估聚类效果 - 轮廓系数(Silhouette Score):衡量样本与其聚类的相似性。值范围在 [-1, 1] 之间,值越大表示聚类效果越好。
score = silhouette_score(X, y_kmeans)
print(f"Silhouette Score: {score:.3f}")# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='o')
plt.title("K-Means Clustering")
plt.show()
运行上述代码的输出:
Silhouette Score: 0.682
参数释义:
- n_clusters:指定要形成的簇的数量。
- init:初始化簇中心的方法,常用的有 ‘k-means++’(默认)和 ‘random’。
- max_iter:最大迭代次数。
- n_init:运行算法的次数,选择最佳结果。
3.3、示例2:对数据集进行层次聚类分析
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score# 生成样本数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 创建层次聚类模型
agg_clustering = AgglomerativeClustering(n_clusters=4, metric='euclidean', linkage='ward',)
y_agg = agg_clustering.fit_predict(X)# 评估聚类效果 - 轮廓系数(Silhouette Score):衡量样本与其聚类的相似性。值范围在 [-1, 1] 之间,值越大表示聚类效果越好。
score = silhouette_score(X, y_kmeans)
print(f"Silhouette Score: {score:.3f}")# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_agg, s=50, cmap='viridis')
plt.title("Agglomerative Clustering")
plt.show()
运行上述代码的输出:
Silhouette Score: 0.682
参数释义:
- n_clusters:指定要形成的簇的数量。
- metric:计算样本之间距离的方式,常用的有 ‘euclidean’(欧氏距离)和 ‘manhattan’(曼哈顿距离)。
- linkage:聚类的连接方式,常用的有 ‘ward’(默认)、‘complete’、‘average’ 和 ‘single’。
3.4、示例3:对数据集进行基于密度的聚类分析
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import DBSCAN
from sklearn.metrics import silhouette_score# 生成样本数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 创建 DBSCAN 模型
dbscan = DBSCAN(eps=0.5, min_samples=5)
y_dbscan = dbscan.fit_predict(X)# 评估聚类效果 - 轮廓系数(Silhouette Score):衡量样本与其聚类的相似性。值范围在 [-1, 1] 之间,值越大表示聚类效果越好。
score = silhouette_score(X, y_kmeans)
print(f"Silhouette Score: {score:.3f}")# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_dbscan, s=50, cmap='viridis')
plt.title("DBSCAN Clustering")
plt.show()
运行上述代码的输出:
Silhouette Score: 0.682
参数释义:
- eps:指定形成簇的最大距离(邻域的半径)。
- min_samples:形成一个簇所需的最小样本数。
4、 总结
本篇以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析,同时使用轮廓系数评估了聚类效果。每种算法都有其独特的优缺点,适用于不同类型的数据集。在实际应用中,选择合适的聚类算法和优化参数是获得良好聚类效果的关键。通过可视化和评估指标,可以更好地理解聚类结果的质量。
相关文章:

AI人工智能机器学习之聚类分析
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。 2、聚类分析 - 简介 聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组ÿ…...

(下:补充——五个模型的理论基础)深度学习——图像分类篇章
目录 1.1 卷积神经网络基础 3.1 AlexNet网络结构详解与花分类数据集下载 4.1 VGG网络详解及感受野的计算 5.1 GoogLeNet网络详解 6.1 ResNet网络结构,BN以及迁移学习详解 总结(可以直接看总结) 1.1 卷积神经网络基础 视频讲解…...
使用Python自动生成图文并茂的网页分析报告
在数据分析中,不管是市场研究还是科学分析,经常需要使用Python进行数据分析并生成图表报告。一般使用Python生成和展示图表时都是使用matplotlib 库生成静态图片文件,这种方式不便之处是不方便跟动态文字段落结合在一起,也不方便分…...

uniapp-原生android插件开发摘要
uni-app在App侧的原生扩展插件,支持使用java、object-c等原生语言编写,从HBuilderX 3.6起,新增支持了使用uts来开发原生插件。 基础项目 UniPlugin-Hello-AS工程请在App离线SDK中查找 基础项目(App离线SDK)已经配置好了自定义插件所需要的…...

GIT工具学习【1】:基本操作
目录 0.本地代码分区1.配置自己的个人信息(设置一次即可)2.新建仓库3.提交代码到暂存区(加入购物车)4.从暂存区撤回(不会改变工作区文件)5.恢复指定版本(会改变工作区文件)5.1&#…...
《国密算法开发实战:从合规落地到性能优化》
前言 随着信息技术的飞速发展,信息安全已成为全球关注的焦点。在数字化时代,数据的保密性、完整性和可用性直接关系到国家、企业和个人的利益。为了保障信息安全,密码技术作为核心支撑,发挥着至关重要的作用。国密算法,即国家密码算法,是我国自主设计和推广的一系列密码…...

【语法】C++中string类中的两个问题及解答
贴主在学习string类时遇到过两个困扰我的问题,今天拿出来给大家分享一下我是如何解决的 一、扩容时capacity的增长问题 在string的capacity()接口中,调用的是这个string对象的容量(可以存多少个有效字符),而size()是调用的string对象现在有…...
LeetCode-154. 寻找旋转排序数组中的最小值 II
1、题目描述: 已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums [0,1,4,4,5,6,7] 在变化后可能得到: 若旋转 4 次,则可以得到 [4,5,6,7,0,…...
2.数据结构:1.Tire 字符串统计
1.Tire 字符串统计 #include<algorithm> #include<cstring> #include<iostream>using namespace std;const int N100010; int son[N][26];//至多 N 层,每一层至多 26 个节点(字母) int cnt[N];//字符串至多 N 个ÿ…...
C语言复习4:有关数组的基础常见算法
# 数组的常见算法 - 查找算法 1. 基本查找/顺序查找 2. 二分查找/折半查找 3. 插值查找 4. 分块查找 5. 哈希查找 6. 树表查找 7. 斐波那契查找 - 排序算法(顾名思义,就是把没有顺序的…...
Ubuntu从零创建Hadoop集群
目录 前言 前提准备 1.设置网关和网段 2.查看虚拟机IP及检查网络 3.Ubuntu相关配置 镜像源配置 下载 vim编辑器 4.设置静态IP和SSH免密(可选) 设置静态IP SSH免密 5.JDK环境部署 6.Hadoop环境部署 7.配置 Hadoop 配置文件 HDFS集群规划 HDFS集群配置 1.配…...

GPIO概念
GPIO通用输入输出口 在芯片内部存在多个GPIO,每个GPIO用于管理多个芯片进行输入,输出工作 引脚电平 0v ~3.3v,部分引脚可容任5v 输出模式下可控制端口输出高低电平,可以驱动LED,控制蜂鸣器,模拟通信协议&a…...
Node.js, Bun, Deno 比较概述
以下是 Node.js、Bun 和 Deno 的对比分析 概览 对比维度Node.jsDenoBun首次发布200920202022创始人Ryan DahlRyan Dahl(Node.js 原作者)Jarred Sumner运行时引擎V8(Chrome)V8(Chrome)JavaScriptCore&#…...

C# 类库打包dll文件
目录 前言操作流程注意事项 前言 在C#中,有多种方式可以对代码进行加密,以保护源代码不被轻易查看或修改,这篇文章主要介绍将C# cs类文件加密为dll文件的方式进行保护。 操作流程 在 Visual Studio 中,选择“创建新项目”。 选…...

Linux中的UDP编程接口基本使用
UDP编程接口基本使用 本篇介绍 在前面网络基础部分已经介绍了网络的基本工作模式,有了这些理论基础之后,下面先从UDP编程开始从操作部分深入网络 在本篇中,主要考虑下面的内容: 创建并封装服务端:了解创建服务端的…...

RAG项目实战:金融问答系统
需求痛点 私有知识很多,如何让大模型只选择跟问题有关的知识进行参考呢? 需求分析 是否可以使用关键词匹配呢?以前的搜索主要使用关键词匹配,这个要求太高了,需要提前抽取准备好关键词,有点像以前SEO的工…...
大白话React第十一章React 相关的高级特性以及在实际项目中的应用优化
假设我们已经对 React 前端框架的性能和可扩展性评估有了一定了解,接下来的阶段可以深入学习 React 相关的高级特性以及在实际项目中的应用优化,以下是详细介绍及代码示例: 1. React 高级特性的深入学习 1.1 React 并发模式(Con…...
虚拟机Linux操作(持续更新ing)
虚拟机操作(持续更新ing) 虚拟机基本操作(Linux) # Linux # 立刻关机 poweroff # 立刻关机,可以选择数字或者具体时间 shutdown -h now # 立刻重启,可以选择数字或者具体时间 shutdown -r now # 立刻重启 reboot # cd 切换目录,下面用根目录举例 cd /…...
【开源-线程池(Thread Pool)项目对比】
一些实现**线程池(Thread Pool)**功能的开源项目的对比分析。 线程池功能的开源项目 项目名称语言优点缺点适用场景开源代码链接ThreadPoolC简单易用,代码简洁;适合快速原型开发。功能较为基础,不支持动态调整线程数…...
JMeter 实战项目脚本录制最佳实践(含 BadBoy 录制方式)
JMeter 实战项目脚本录制最佳实践(含 BadBoy 录制方式) 一、项目背景 在软件测试过程中,使用 JMeter 进行性能测试和功能测试是常见的操作。本实战项目将详细介绍如何使用 JMeter 自带工具以及 BadBoy 进行脚本录制,并完善脚本以…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...