大语言模型学习--LangChain
LangChain基本概念
ReAct学习资料
https://zhuanlan.zhihu.com/p/660951271
LangChain官网地址
Introduction | 🦜️🔗 LangChain
LangChain是一个基于语言模型开发应用程序的框架。它可以实现以下应用程序:
- 数据感知:将语言模型连接到其他数据源
- 自主性:允许语言模型与其环境进行交互
LangChain的主要价值在于:
- 组件化:为使用语言模型提供抽象层,以及每个抽象层的一组实现。组件是模块化且易于使用的,无论您是否使用LangChain框架的其余部分。
- 现成的链:结构化的组件集合,用于完成特定的高级任务
LangChain具体能力
优劣势
LangChain实践
本地环境安装
pip install langchain
langchain依赖关系
下面使用Langchain来集成阿里的通义千问
首先要申请API-key 然后本地python调用一下
参考地址阿里云登录 - 欢迎登录阿里云,安全稳定的云计算服务平台
代码如下:
import os
from openai import OpenAIclient = OpenAI(# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",api_key=os.getenv("DASHSCOPE_API_KEY"), base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(model="qwen-plus", # 此处以qwen-plus为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/modelsmessages=[{'role': 'system', 'content': 'You are a helpful assistant.'},{'role': 'user', 'content': '你是谁?'}],)print(completion.model_dump_json())
API-Key申请参考链接 如何获取API Key_大模型服务平台百炼(Model Studio)-阿里云帮助中心
有一定的免费额度
本地测试输出如下:
{"id":"chatcmpl-f970c884-fbe9-99f0-8d9f-8c18209ee58f","choices":[{"finish_reason":"stop","index":0,"logprobs":null,"message":{"content":"我是来自阿里云的大规模语言模型,我叫通义千问。","refusal":null,"role":"assistant","audio":null,"function_call":null,"tool_calls":null}}],"created":1740919207,"model":"qwen-plus","object":"chat.completion","service_tier":null,"system_fingerprint":null,"usage":{"completion_tokens":16,"prompt_tokens":22,"total_tokens":38,"completion_tokens_details":null,"prompt_tokens_details":{"audio_tokens":null,"cached_tokens":0}}}
接下来使用LangChain来接入大模式试下:
import os
from langchain_community.llms import Tongyi
from langchain_core.messages import HumanMessageos.environ["DASHSCOPE_API_KEY"] = "xxx" # 此处为通义千问的API KEYllm = Tongyi(temperature=1) # 创建一个Tongyi模型实例,设置温度为1
result = llm.invoke([HumanMessage(content="你是谁?")]) # 使用模型进行语言处理任务
print(result) # 输出处理结果
输出结果如下:
我是阿里云开发的一款超大规模语言模型,我叫通义千问。
LangChain作为一个脚手架 能够快速集成大模型以及实现一些其他格式化功能,本质是为了能够更好的调用相关大模型API以及进行业务逻辑处理。
相关文章:

大语言模型学习--LangChain
LangChain基本概念 ReAct学习资料 https://zhuanlan.zhihu.com/p/660951271 LangChain官网地址 Introduction | 🦜️🔗 LangChain LangChain是一个基于语言模型开发应用程序的框架。它可以实现以下应用程序: 数据感知:将语言模型…...
Spark内存迭代计算
一、宽窄依赖 窄依赖:父RDD的一个分区数据全部发往子RDD的一个分区 宽依赖:父RDD的一个分区数据发往子RDD的多个分区,也称为shuffle 二、Spark是如何进行内存计算的?DAG的作用?Stage阶段划分的作用? &a…...
Python之参数星号(*)使用笔记
背景 在学习python时发现方法调用和方法定义会经常发现有带星号的标记,为了弄明白是怎么使用的。特此做个笔记。 一、参数符号对比速查表 符号类使用场景作用描述示例无符号函数定义/调用普通位置参数或关键字参数.def func(a, b)*函数定义收集多余位置参数为元组…...
一文掌握 Scrapy 框架的详细使用,包括实战案例
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 1. Scrapy 简介2. Scrapy 的核心组件3. 安装 Scrapy4. 创建 Scrapy 项目4.1 创建项目4.2 创建 Spider5. 编写 Spider5.1 定义 Item5.2 编写 Spider 逻辑6. 运行 Scrapy 爬虫6.1 运行爬虫6.2 保存爬取数据7. Scrapy 的高…...

【Mac】git使用再学习
目录 前言 如何使用github建立自己的代码库 第一步:建立本地git与远程github的联系 生成密钥 将密钥加入github 第二步:创建github仓库并clone到本地 第三步:上传文件 常见的git命令 git commit git branch git merge/git rebase …...

【MySQL篇】数据库基础
目录 1,什么是数据库? 2,主流数据库 3,MySQL介绍 1,MySQL架构 2,SQL分类 3,MySQL存储引擎 1,什么是数据库? 数据库(Database,简称DB…...
SpringBoot项目注入 traceId 来追踪整个请求的日志链路
SpringBoot项目注入 traceId 来追踪整个请求的日志链路,有了 traceId, 我们在排查问题的时候,可以迅速根据 traceId 查找到相关请求的日志,特别是在生产环境的时候,用户可能只提供一个错误截图,我们作为开发…...

【Block总结】SAFMN,空间自适应调制与局部特征增强的协同设计|即插即用
论文信息 标题:Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution论文链接:https://arxiv.org/pdf/2302.13800代码与模型:https://github.com/sunny2109/SAFMN 创新点 空间自适应特征调制(SAFM&…...
Python爬虫:一文掌握PyQuery模块
文章目录 1. PyQuery 简介2. PyQuery 的安装2.1 安装 PyQuery2.2 安装依赖库3. PyQuery 的基本使用3.1 初始化 PyQuery 对象3.2 选择元素3.3 获取元素内容3.4 遍历元素4. PyQuery 的高级用法4.1 过滤元素4.2 查找子元素4.3 获取属性值4.4 修改元素4.5 添加和删除元素4.6 遍历文…...

LearnOpenGL之Shader编程用算法绘画
———————————————————— 前序 ——————————————————— AndroidLearnOpenGL是本博主自己实现的LearnOpenGL练习集合: Github地址:GitHub - wangyongyao1989/AndroidLearnOpenGL: OpenGL基础及运用 系列文章ÿ…...

如何使用Spring Boot框架整合Redis:超详细案例教程
目录 # 为什么选择Spring Boot与Redis整合? 1. 更新 pom.xml 2. 配置application.yml 3. 创建 Redis 配置类 4. Redis 操作类 5. 创建控制器 6. 启动应用程序 7. 测试 # 为什么选择Spring Boot与Redis整合? 将Spring Boot与Redis整合可以充分利…...

算法--贪心
贪心 原理经典例题[860. 柠檬水找零](https://leetcode.cn/problems/lemonade-change/description/)[2208. 将数组和减半的最少操作次数](https://leetcode.cn/problems/minimum-operations-to-halve-array-sum/description/)[179. 最大数](https://leetcode.cn/problems/large…...

线程控制(创建、终止、等待、分离)
目录 1.前言 2.创建线程 pthread_create函数 3.线程终止 pthread_exit函数 pthread_cancel函数 4.线程等待 5.线程分离 1.前言 在Linux系统中,并不存在真正的线程,只有轻量级进程。所以,Linux系统只提供了操作轻量级进程的系统调用…...
【备份】php项目处理跨域请求踩坑
这都是老生常谈的东西了。我还在踩坑,记录一下。 我在项目入口明明写了如下代码: // 处理预检请求 (OPTIONS) if ($_SERVER[REQUEST_METHOD] OPTIONS) {header("Access-Control-Allow-Origin: https://xxx.vip");header("Access-Cont…...
目标检测YOLO实战应用案例100讲-面向无人机图像的小目标检测
目录 知识储备 YOLO v8无人机拍摄视角小目标检测 数据集结构 环境部署说明 安装依赖 模型训练权重和指标可视化展示 训练 YOLOv8 PyQt5 GUI 开发 主窗口代码 main_window.py 使用说明 无人机目标跟踪 一、目标跟踪的基本原理 二、常用的目标跟踪算法 基于YOLOv…...

实现 Leaflet 多类型点位标记与聚合功能的实战经验分享
在现代的地理信息系统(GIS)应用中,地图功能是不可或缺的一部分。无论是展示商业网点、旅游景点还是公共服务设施,地图都能以直观的方式呈现数据。然而,当数据量较大时,地图上可能会出现大量的标记点&#x…...

Linux 环境“从零”部署 MongoDB 6.0:mongosh 安装与数据操作全攻略
前提 完成linux平台部署MongoDB【部署教程】且完成mongosh的安装 由于本人使用的是6.0版本的MongoDB,新版本 MongoDB(尤其是 6.0 及以上版本)已经不再默认捆绑传统的 mongo shell,而改用新的 MongoDB Shell(mongosh&am…...
深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
# 深度学习五虎将:当CNN遇见Transformer的奇幻漂流 ## 序章:AI江湖的兵器谱排行 2012年,多伦多大学的厨房里,Hinton的学生们用GPU煎了个"AlexNet"荷包蛋,从此开启了深度学习的热兵器时代。如今五大模型各显…...
004 rocketmq集群
1、集群模式 在RocketMQ中,集群的部署模式是比较多的,有以下几种: public class ConsumerDemo {public static void main(String[] args) throws Exception {DefaultMQPushConsumer consumer new DefaultMQPushConsumer("test-group&qu…...

基于 Python 深度学习的电影评论情感分析可视化系统(2.0 全新升级)
基于 Python 深度学习的电影评论情感分析可视化系统,基于 Flask 深度学习,构建了一个 影评情感分析系统,能够 自动分析影评、计算情感趋势 并 可视化展示,对于电影行业具有重要参考价值! 基于 Python 深度学习的电影评…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...