当前位置: 首页 > news >正文

【量化策略】均值回归策略

【量化策略】均值回归策略

🚀量化软件开通

🚀量化实战教程

技术背景与应用场景

在金融市场中,价格波动是常态,但长期来看,资产价格往往会围绕其历史平均水平上下波动。均值回归策略正是基于这一现象设计的量化交易策略。该策略认为,当资产价格偏离其历史均值较远时,未来有较高概率会向均值方向回归。因此,通过识别这些偏离机会,可以在价格回归时获得收益。

技术原理与实现思路

基本原理

均值回归策略的核心思想是利用统计学中的均值回归理论。具体来说,该策略首先计算资产的历史平均价格(即“均值”),然后监控当前价格与这个均值的偏差程度。当偏差超过某个预设的阈值时(通常用标准差来衡量),就认为出现了交易机会:如果当前价格高于均值较多,则预期未来会下跌;反之则预期会上涨。

实现步骤

  1. 数据收集:首先需要收集目标资产的历中价格数据。
  2. 计算均值和标准差:基于历史数据计算出价格的均值和标准差。
  3. 设定交易信号:根据当前价格与均值的偏差程度设定买入或卖出的信号。例如,当价格上涨超过一个标准差时卖出,下跌超过一个标准差时买入。
  4. 执行交易:根据设定的信号进行买卖操作。
  5. 风险管理:设置止损和止盈点以控制风险。

Python代码示例(简化版)

import numpy as np
import pandas as pd 
data = pd.read_csv('price_data.csv') # 假设已经有一个包含历史价格的CSV文件 
data['mean'] = data['price'].rolling(window=20).mean() # 计算20日移动平均线 
data['std'] = data['price'].rolling(window=20).std() # 计算20日标准偏差 
data['upper_band'] = data['mean'] + (data['std'] *1) #上轨线为平均值加一倍标准偏差 
data['lower_band'] = data ['mean'] - (data ['std'] *1) #下轨线为平均值减一倍标准偏差 
signals = [] for i in range(len(data)): if (data.loc[i,'price']) >(data.loc[i,'upper_band']) : signals.append(-1)#卖出信号 elif (data.loc[i,'price']) <(data.loc[i,'lower_band']) : signals.append(1)#买入信号 else: signals.append(0)#无操作 signal_df=pd.DataFrame({'signals':signals},index=data.index ) print(signal_df.tail())#查看最后几条记录以验证结果 ``` ##使用建议和注意事项 - **市场选择**:并非所有市场都适合使用此方法,应选择那些具有明显周期性波动特征且流动性较好的市场进行操作; - **参数优化**:不同时间段内可能需要调整窗口期长度及倍数因子等参数以达到最佳效果; - **风险控制**:严格执行止损止盈规则非常重要,避免因单次失误导致重大损失; - **组合运用**:可以与其他类型如动量追踪等互补性较强的方法结合使用以提高整体表现稳定性.

相关文章:

【量化策略】均值回归策略

【量化策略】均值回归策略 &#x1f680;量化软件开通 &#x1f680;量化实战教程 技术背景与应用场景 在金融市场中&#xff0c;价格波动是常态&#xff0c;但长期来看&#xff0c;资产价格往往会围绕其历史平均水平上下波动。均值回归策略正是基于这一现象设计的量化交易…...

iterm2更新后主题报错

报错 .oh-my-zsh/themes/agnoster.zsh-theme:307: parse error near <<<。方法1&#xff1a;更新Oh My Zsh主题&#xff08;以agnoster为例&#xff09; 适用场景&#xff1a;使用Oh My Zsh自带主题&#xff08;如agnoster&#xff09;时出现语法错误。 备份当前主题…...

深度学习架构Seq2Seq-添加并理解注意力机制(一)

第一章&#xff1a;人工智能之不同数据类型及其特点梳理 第二章&#xff1a;自然语言处理(NLP)&#xff1a;文本向量化从文字到数字的原理 第三章&#xff1a;循环神经网络RNN&#xff1a;理解 RNN的工作机制与应用场景(附代码) 第四章&#xff1a;循环神经网络RNN、LSTM以及GR…...

Kafka底层结构

1. Kafka 架构总览 Kafka 是一个分布式消息队列&#xff0c;采用**发布-订阅&#xff08;Pub-Sub&#xff09;**模式&#xff0c;核心组件包括&#xff1a; Producer&#xff08;生产者&#xff09;&#xff1a; 负责向 Kafka 发送消息。Broker&#xff08;Kafka 服务器&…...

[BUUCTF]web--wp(持续更新中)

ps:文章所引用知识点链接&#xff0c;如有侵权&#xff0c;请联系删除 [极客大挑战 2019]EasySQL 题目类型&#xff1a;简单SQL注入 发现是登录页面&#xff0c;用万能登录方法测试&#xff0c;两种语句均能解出flag [极客大挑战 2019]Havefun 题目类型&#xff1a;代码审计…...

axios请求设置request umijopenai生产前端请求 ts状态全局 v-if v-else 与动态js变量

axios请求 安装 npm install axios全局自定义请求 集中处理设置 集体通用请求 example const instance axios.create({baseURL: https://some-domain.com/api/,timeout: 1000,headers: {X-Custom-Header: foobar} });请求前 请求后 拦截器 // 添加请求拦截器 axios.in…...

SparkSQL全之RDD、DF、DS ,UDF、架构、资源划分、sql执行计划、调优......

1 SparkSQL概述 1.1 sparksql简介 Shark是专门针对于spark的构建大规模数据仓库系统的一个框架Shark与Hive兼容、同时也依赖于Spark版本Hivesql底层把sql解析成了mapreduce程序&#xff0c;Shark是把sql语句解析成了Spark任务随着性能优化的上限&#xff0c;以及集成SQL的一些…...

深入理解Linux内存缓存:提升性能的关键

在深入探索 Linux 系统的奇妙世界时&#xff0c;内存管理无疑是一个至关重要的领域。而在 Linux 内存体系中&#xff0c;Cache 扮演着举足轻重的角色。它就像是一位默默奉献的幕后英雄&#xff0c;为系统的高效运行立下汗马功劳。那么&#xff0c;Linux 内存中的 Cache 究竟是什…...

STM32-FOC-SDK包含以下关键知识点

STM32-FOC-SDK&#xff08;Field-Oriented Control - Software Development Kit&#xff09;是专为STM32微控制器设计的一套软件开发工具&#xff0c;用于实现电机控制的磁场定向控制&#xff08;Field Oriented Control&#xff0c;简称FOC&#xff09;。STM32是一款基于ARM C…...

sql调优:优化响应时间(优化sql) ; 优化吞吐量

Sql性能调优的目的 1.优化响应时间>>优化sql 经过调优后&#xff0c;执行查询、更新等操作的时候&#xff0c;数据库的反应速度更快&#xff0c;花费的时间更少。 2.优化吞吐量 即“并发”, 就是“同时处理请求”的能力。 优化sql 尽量将多条SQL语句压缩到一句>…...

【Mybatis】如何简单使用mybatis-plus,以及MybatisGenerator自动生成或者实现SQL语句

前言 &#x1f31f;&#x1f31f;本期讲解关于mybatis中SQL自动生成的相关知识介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;…...

Halcon 车牌识别-超精细教程

车牌示例 流程: 读取图片转灰度图阈值分割,找车牌内容将车牌位置设置变换区域形状找到中心点和弧度利用仿射变换,斜切车牌旋转转正,把车牌抠出来利用形态学操作拼接车牌号数字训练ocr开始识别中文车牌 本文章用到的算子(解析) Halcon 算子-承接车牌识别-CSDN博客 rgb1_to_gray…...

LeetCode 25 - K 个一组翻转链表

LeetCode 25 - K 个一组翻转链表 这道题是一个典型的链表操作题&#xff0c;考察我们对链表的精确操作&#xff0c;包括反转链表、分组处理、递归和迭代的结合应用等。还可以通过变体问题延伸到优先队列操作、归并、分块等&#xff0c;这使得它成为面试中的高频考题之一。 题目…...

一文读懂智能硬件定位:开启智能时代的精准导航

一、智能硬件定位是什么 &#xff08;一&#xff09;基本概念阐述 智能硬件定位&#xff0c;本质上是智能硬件依托一系列特定技术手段&#xff0c;精准测定自身所处地理位置的过程。这一实现过程离不开诸多关键技术的支撑。传感器堪称其中的 “排头兵”&#xff0c;像加速度计…...

夸父工具箱(安卓版) 手机超强工具箱

如今&#xff0c;人们的互联网活动日益频繁&#xff0c;导致手机内存即便频繁清理&#xff0c;也会莫名其妙地迅速填满&#xff0c;许多无用的垃圾信息悄然占据空间。那么&#xff0c;如何有效应对这一难题呢&#xff1f;答案就是今天新推出的这款工具软件&#xff0c;它能从根…...

Html5学习教程,从入门到精通,HTML5 列表语法知识点及案例代码(11)

HTML 列表语法知识点及案例代码 一、HTML 列表类型 HTML 提供了三种列表类型&#xff1a; 无序列表 (Unordered List)&#xff1a;使用 <ul> 标签定义&#xff0c;列表项使用 <li> 标签定义。默认情况下&#xff0c;列表项前面会显示黑色圆点。有序列表 (Ordere…...

内核进程调度队列(linux的真实调度算法) ─── linux第13课

目录 内核进程调度队列的过程 一个CPU拥有一个runqueue(运行队列在内存) 活动队列(active) 过期队列(expired) active指针和expired指针 重绘runqueue linux内核O(1)调度算法 总结 补充知识: 封装链式结构的目的是: 仅使用封装链式结构可以得到全部的task_struct的信…...

16.7 LangChain LCEL 极简入门:Prompt + LLM 的黄金组合

LangChain LCEL 极简入门:Prompt + LLM 的黄金组合 关键词:LCEL 基础示例、Prompt 模板设计、LLM 集成、链式调用、LangChain 快速上手 1. 基础架构解析:Prompt → LLM → Output 1.1 核心组件交互流程 #mermaid-svg-pv3fH3mEKyE4TNaF {font-family:"trebuchet ms&qu…...

Spring线程池学习笔记

Spring提供了多种方式来配置和使用线程池&#xff0c;最常见的是通过TaskExecutor和ThreadPoolTaskExecutor。 Spring线程池 TaskExecutor 接口 TaskExecutor 是Spring框架中的一个接口&#xff0c;它是对Java的Executor接口的简单封装。它的主要目的是为了提供一个统一的接口…...

ArcGIS操作:08 计算shp面积并添加到属性表

1、打开属性表 注意&#xff1a;计算面积前&#xff0c;需要把shp的坐标系转化为投影坐标系&#xff08;地理坐标系用于定位、投影坐标系用于测量&#xff09; 2、创建字段 3、编辑字段名、类型 4、选择字段&#xff0c;计算几何 5、选择属性、坐标系、单位...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...