当前位置: 首页 > news >正文

【量化策略】均值回归策略

【量化策略】均值回归策略

🚀量化软件开通

🚀量化实战教程

技术背景与应用场景

在金融市场中,价格波动是常态,但长期来看,资产价格往往会围绕其历史平均水平上下波动。均值回归策略正是基于这一现象设计的量化交易策略。该策略认为,当资产价格偏离其历史均值较远时,未来有较高概率会向均值方向回归。因此,通过识别这些偏离机会,可以在价格回归时获得收益。

技术原理与实现思路

基本原理

均值回归策略的核心思想是利用统计学中的均值回归理论。具体来说,该策略首先计算资产的历史平均价格(即“均值”),然后监控当前价格与这个均值的偏差程度。当偏差超过某个预设的阈值时(通常用标准差来衡量),就认为出现了交易机会:如果当前价格高于均值较多,则预期未来会下跌;反之则预期会上涨。

实现步骤

  1. 数据收集:首先需要收集目标资产的历中价格数据。
  2. 计算均值和标准差:基于历史数据计算出价格的均值和标准差。
  3. 设定交易信号:根据当前价格与均值的偏差程度设定买入或卖出的信号。例如,当价格上涨超过一个标准差时卖出,下跌超过一个标准差时买入。
  4. 执行交易:根据设定的信号进行买卖操作。
  5. 风险管理:设置止损和止盈点以控制风险。

Python代码示例(简化版)

import numpy as np
import pandas as pd 
data = pd.read_csv('price_data.csv') # 假设已经有一个包含历史价格的CSV文件 
data['mean'] = data['price'].rolling(window=20).mean() # 计算20日移动平均线 
data['std'] = data['price'].rolling(window=20).std() # 计算20日标准偏差 
data['upper_band'] = data['mean'] + (data['std'] *1) #上轨线为平均值加一倍标准偏差 
data['lower_band'] = data ['mean'] - (data ['std'] *1) #下轨线为平均值减一倍标准偏差 
signals = [] for i in range(len(data)): if (data.loc[i,'price']) >(data.loc[i,'upper_band']) : signals.append(-1)#卖出信号 elif (data.loc[i,'price']) <(data.loc[i,'lower_band']) : signals.append(1)#买入信号 else: signals.append(0)#无操作 signal_df=pd.DataFrame({'signals':signals},index=data.index ) print(signal_df.tail())#查看最后几条记录以验证结果 ``` ##使用建议和注意事项 - **市场选择**:并非所有市场都适合使用此方法,应选择那些具有明显周期性波动特征且流动性较好的市场进行操作; - **参数优化**:不同时间段内可能需要调整窗口期长度及倍数因子等参数以达到最佳效果; - **风险控制**:严格执行止损止盈规则非常重要,避免因单次失误导致重大损失; - **组合运用**:可以与其他类型如动量追踪等互补性较强的方法结合使用以提高整体表现稳定性.

相关文章:

【量化策略】均值回归策略

【量化策略】均值回归策略 &#x1f680;量化软件开通 &#x1f680;量化实战教程 技术背景与应用场景 在金融市场中&#xff0c;价格波动是常态&#xff0c;但长期来看&#xff0c;资产价格往往会围绕其历史平均水平上下波动。均值回归策略正是基于这一现象设计的量化交易…...

iterm2更新后主题报错

报错 .oh-my-zsh/themes/agnoster.zsh-theme:307: parse error near <<<。方法1&#xff1a;更新Oh My Zsh主题&#xff08;以agnoster为例&#xff09; 适用场景&#xff1a;使用Oh My Zsh自带主题&#xff08;如agnoster&#xff09;时出现语法错误。 备份当前主题…...

深度学习架构Seq2Seq-添加并理解注意力机制(一)

第一章&#xff1a;人工智能之不同数据类型及其特点梳理 第二章&#xff1a;自然语言处理(NLP)&#xff1a;文本向量化从文字到数字的原理 第三章&#xff1a;循环神经网络RNN&#xff1a;理解 RNN的工作机制与应用场景(附代码) 第四章&#xff1a;循环神经网络RNN、LSTM以及GR…...

Kafka底层结构

1. Kafka 架构总览 Kafka 是一个分布式消息队列&#xff0c;采用**发布-订阅&#xff08;Pub-Sub&#xff09;**模式&#xff0c;核心组件包括&#xff1a; Producer&#xff08;生产者&#xff09;&#xff1a; 负责向 Kafka 发送消息。Broker&#xff08;Kafka 服务器&…...

[BUUCTF]web--wp(持续更新中)

ps:文章所引用知识点链接&#xff0c;如有侵权&#xff0c;请联系删除 [极客大挑战 2019]EasySQL 题目类型&#xff1a;简单SQL注入 发现是登录页面&#xff0c;用万能登录方法测试&#xff0c;两种语句均能解出flag [极客大挑战 2019]Havefun 题目类型&#xff1a;代码审计…...

axios请求设置request umijopenai生产前端请求 ts状态全局 v-if v-else 与动态js变量

axios请求 安装 npm install axios全局自定义请求 集中处理设置 集体通用请求 example const instance axios.create({baseURL: https://some-domain.com/api/,timeout: 1000,headers: {X-Custom-Header: foobar} });请求前 请求后 拦截器 // 添加请求拦截器 axios.in…...

SparkSQL全之RDD、DF、DS ,UDF、架构、资源划分、sql执行计划、调优......

1 SparkSQL概述 1.1 sparksql简介 Shark是专门针对于spark的构建大规模数据仓库系统的一个框架Shark与Hive兼容、同时也依赖于Spark版本Hivesql底层把sql解析成了mapreduce程序&#xff0c;Shark是把sql语句解析成了Spark任务随着性能优化的上限&#xff0c;以及集成SQL的一些…...

深入理解Linux内存缓存:提升性能的关键

在深入探索 Linux 系统的奇妙世界时&#xff0c;内存管理无疑是一个至关重要的领域。而在 Linux 内存体系中&#xff0c;Cache 扮演着举足轻重的角色。它就像是一位默默奉献的幕后英雄&#xff0c;为系统的高效运行立下汗马功劳。那么&#xff0c;Linux 内存中的 Cache 究竟是什…...

STM32-FOC-SDK包含以下关键知识点

STM32-FOC-SDK&#xff08;Field-Oriented Control - Software Development Kit&#xff09;是专为STM32微控制器设计的一套软件开发工具&#xff0c;用于实现电机控制的磁场定向控制&#xff08;Field Oriented Control&#xff0c;简称FOC&#xff09;。STM32是一款基于ARM C…...

sql调优:优化响应时间(优化sql) ; 优化吞吐量

Sql性能调优的目的 1.优化响应时间>>优化sql 经过调优后&#xff0c;执行查询、更新等操作的时候&#xff0c;数据库的反应速度更快&#xff0c;花费的时间更少。 2.优化吞吐量 即“并发”, 就是“同时处理请求”的能力。 优化sql 尽量将多条SQL语句压缩到一句>…...

【Mybatis】如何简单使用mybatis-plus,以及MybatisGenerator自动生成或者实现SQL语句

前言 &#x1f31f;&#x1f31f;本期讲解关于mybatis中SQL自动生成的相关知识介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;…...

Halcon 车牌识别-超精细教程

车牌示例 流程: 读取图片转灰度图阈值分割,找车牌内容将车牌位置设置变换区域形状找到中心点和弧度利用仿射变换,斜切车牌旋转转正,把车牌抠出来利用形态学操作拼接车牌号数字训练ocr开始识别中文车牌 本文章用到的算子(解析) Halcon 算子-承接车牌识别-CSDN博客 rgb1_to_gray…...

LeetCode 25 - K 个一组翻转链表

LeetCode 25 - K 个一组翻转链表 这道题是一个典型的链表操作题&#xff0c;考察我们对链表的精确操作&#xff0c;包括反转链表、分组处理、递归和迭代的结合应用等。还可以通过变体问题延伸到优先队列操作、归并、分块等&#xff0c;这使得它成为面试中的高频考题之一。 题目…...

一文读懂智能硬件定位:开启智能时代的精准导航

一、智能硬件定位是什么 &#xff08;一&#xff09;基本概念阐述 智能硬件定位&#xff0c;本质上是智能硬件依托一系列特定技术手段&#xff0c;精准测定自身所处地理位置的过程。这一实现过程离不开诸多关键技术的支撑。传感器堪称其中的 “排头兵”&#xff0c;像加速度计…...

夸父工具箱(安卓版) 手机超强工具箱

如今&#xff0c;人们的互联网活动日益频繁&#xff0c;导致手机内存即便频繁清理&#xff0c;也会莫名其妙地迅速填满&#xff0c;许多无用的垃圾信息悄然占据空间。那么&#xff0c;如何有效应对这一难题呢&#xff1f;答案就是今天新推出的这款工具软件&#xff0c;它能从根…...

Html5学习教程,从入门到精通,HTML5 列表语法知识点及案例代码(11)

HTML 列表语法知识点及案例代码 一、HTML 列表类型 HTML 提供了三种列表类型&#xff1a; 无序列表 (Unordered List)&#xff1a;使用 <ul> 标签定义&#xff0c;列表项使用 <li> 标签定义。默认情况下&#xff0c;列表项前面会显示黑色圆点。有序列表 (Ordere…...

内核进程调度队列(linux的真实调度算法) ─── linux第13课

目录 内核进程调度队列的过程 一个CPU拥有一个runqueue(运行队列在内存) 活动队列(active) 过期队列(expired) active指针和expired指针 重绘runqueue linux内核O(1)调度算法 总结 补充知识: 封装链式结构的目的是: 仅使用封装链式结构可以得到全部的task_struct的信…...

16.7 LangChain LCEL 极简入门:Prompt + LLM 的黄金组合

LangChain LCEL 极简入门:Prompt + LLM 的黄金组合 关键词:LCEL 基础示例、Prompt 模板设计、LLM 集成、链式调用、LangChain 快速上手 1. 基础架构解析:Prompt → LLM → Output 1.1 核心组件交互流程 #mermaid-svg-pv3fH3mEKyE4TNaF {font-family:"trebuchet ms&qu…...

Spring线程池学习笔记

Spring提供了多种方式来配置和使用线程池&#xff0c;最常见的是通过TaskExecutor和ThreadPoolTaskExecutor。 Spring线程池 TaskExecutor 接口 TaskExecutor 是Spring框架中的一个接口&#xff0c;它是对Java的Executor接口的简单封装。它的主要目的是为了提供一个统一的接口…...

ArcGIS操作:08 计算shp面积并添加到属性表

1、打开属性表 注意&#xff1a;计算面积前&#xff0c;需要把shp的坐标系转化为投影坐标系&#xff08;地理坐标系用于定位、投影坐标系用于测量&#xff09; 2、创建字段 3、编辑字段名、类型 4、选择字段&#xff0c;计算几何 5、选择属性、坐标系、单位...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...