【大模型】大模型分类
大模型(Large Models)通常指参数量巨大、计算能力强大的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是大模型的常见分类方式:
1. 按应用领域分类
- 自然语言处理(NLP)模型
如GPT-3、BERT、T5等,主要用于文本生成、翻译、问答等任务。 - 计算机视觉(CV)模型
如ResNet、EfficientNet、Vision Transformer (ViT)等,用于图像分类、目标检测等任务。 - 多模态模型
如CLIP、DALL·E等,能够同时处理文本和图像等多模态数据。 - 语音模型
如WaveNet、Whisper等,用于语音识别、合成等任务。 - 强化学习模型
如AlphaGo、AlphaZero等,用于游戏、机器人控制等领域。
2. 按模型架构分类
- Transformer 模型
如GPT、BERT、T5等,基于Transformer架构,广泛应用于NLP。 - 卷积神经网络(CNN)模型
如ResNet、Inception等,主要用于图像处理。 - 循环神经网络(RNN)模型
如LSTM、GRU等,适用于序列数据处理。 - 生成对抗网络(GAN)模型
如StyleGAN、BigGAN等,用于图像生成和编辑。 - 图神经网络(GNN)模型
如GCN、GAT等,用于图结构数据处理。
3. 按模型规模分类
- 小型模型
参数量较少(如数百万到数亿),适合移动设备或实时应用。 - 中型模型
参数量在数十亿左右,适合一般企业应用。 - 大型模型
参数量达数百亿甚至千亿(如GPT-3、PaLM),适合复杂任务。 - 超大规模模型
参数量超过千亿(如GPT-4、Megatron-Turing NLG),需大量计算资源。
4. 按训练方式分类
- 预训练模型
如BERT、GPT等,通过大规模数据预训练,可微调以适应特定任务。 - 微调模型
在预训练基础上,针对特定任务进行微调。 - 端到端模型
直接从输入到输出进行训练,无需预训练。
5. 按开源与闭源分类
- 开源模型
如BERT、GPT-2等,代码和权重公开,可自由使用和修改。 - 闭源模型
如GPT-3、GPT-4等,仅通过API提供,无法访问内部细节。
6. 按模型功能分类
- 生成模型
如GPT、DALL·E等,用于生成文本、图像等内容。 - 判别模型
如BERT、ResNet等,用于分类、检测等任务。 - 多任务模型
如T5、UniLM等,能够同时处理多种任务。
7. 按模型部署方式分类
- 云端模型
如GPT-3、PaLM等,部署在云端,通过API调用。 - 边缘模型
如MobileNet、TinyBERT等,部署在边缘设备上,适合低延迟场景。
8. 按模型优化目标分类
- 通用模型
如GPT、BERT等,适用于多种任务。 - 专用模型
如AlphaFold(蛋白质结构预测)、Codex(代码生成)等,针对特定领域优化。
这些分类方式有助于更好地理解大模型的特点和应用场景。
相关文章:
【大模型】大模型分类
大模型(Large Models)通常指参数量巨大、计算能力强大的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是大模型的常见分类方式: 1. 按应用领域分类 …...
Redis 的几个热点知识
前言 Redis 是一款内存级的数据库,凭借其卓越的性能,几乎成为每位开发者的标配工具。 虽然 Redis 包含大量需要掌握的知识,但其中的热点知识并不多。今天,『知行』就和大家分享一些 Redis 中的热点知识。 Redis 数据结构 Redis…...
【新手入门】SQL注入之getshell(木马)
木马介绍 木马其实就是一段程序,这个程序运行到目标主机上时,主要可以对目标进行远程控制、盗取信息等功能,一般不会破坏目标主机,当然,这也看黑客是否想要搞破坏。 按照功能分类:远控型、破坏型、流氓软件型、盗取信…...
【pytest框架源码分析二】pluggy源码分析之add_hookspecs和register
这里我们看一下_manager.py里的类和方法,最主要的是PluginManager类,类的初始化函数如下: class PluginManager:"""Core class which manages registration of plugin objects and 1:N hookcalling.You can register new hoo…...
四、数据存储
在爬虫项目中,我们需要将目标站点数据进行持久化保存,一般数据保存的方式有两种: 文件保存数据库保存 在数据保存的过程中需要对数据完成去重操作,所有需要使用 redis 中的 set 数据类型完成去重。 1.CSV文件存储 1.1 什么是c…...
【原创】Ollama Test API For Linux/MacOS/Unix
安装Json解析工具 Linux/Unix sudo apt-get install jq -yMacOS brew install jq -y设置环境变量 export IP"192.168.250.229" export PORT"8080" export MODEL"deepseek-r1:7b"检查Ollama版本 curl http://"$IP":"$PORT&qu…...
LeetCode-Hot100-005盛最多水的容器
不懂的可以在评论区问我。 代码 双指针,开始的时候一个在最左边,一个在最右边。每次移动矮的那头,因为这是矮柱子作为容器能装的水的极限了。 class Solution { public:int maxArea(vector<int>& height) {int left 0; int rig…...
电源测试系统有哪些可以利用AI工具的科技??
AI技术的发展对电源模块测试系统的影响是深远的,不仅协助系统提升了测试效率和精度,还推动了测试方法的创新和智能化。那么在电源测试系统中哪些模块可以利用AI工具实现自动化测试? 1. 自动化测试与效率提升 智能测试流程优化 AI算法可以自动优化测试…...
【3-3】springcloud
OpenFeign 启动OpenFeign 定义客户端接口 注入客户端并使用 OpenFeignhttp调用ribbon负载均衡 gateway 来自:https://mynamelancelot.github.io/spring-cloud/spring-cloud-gateway.html#cors https://blog.csdn.net/qingdao666666/article/details/119973771 …...
Goby 漏洞安全通告| Ollama /api/tags 未授权访问漏洞(CNVD-2025-04094)
漏洞名称:Ollama /api/tags 未授权访问漏洞(CNVD-2025-04094) English Name:Ollama /api/tags Unauthorized Access Vulnerability (CNVD-2025-04094) CVSS core: 6.5 风险等级: 中风险 漏洞描述: O…...
Debian 包版本号比较规则详解
1 版本号组成结构 Debian 版本号格式为:[epoch:]upstream_version[-debian_revision] 示例:2:1.18.3~betadfsg1-5b1 组件说明比较优先级Epoch冒号前的数字 (2:)最高Upstream主版本 (1.18.3~betadfsg1)中Debian修订号减号后的部分 (5)最…...
009---基于Verilog HDL的单比特信号边沿检测
文章目录 摘要一、边沿检测二、时序逻辑实现2.1 rtl2.2 tb 三、组合逻辑实现3.1 rtl3.2 tb 摘要 文章为学习记录。采用时序逻辑和组合逻辑实现边沿检测的核心逻辑。组合逻辑实现的上升沿和下降沿的脉冲比时序逻辑实现的上升沿和下降沿的脉冲提前一拍。 一、边沿检测 边沿检测…...
2025全开源Java多语言跨境电商外贸商城/Tk/FB内嵌商城I商家入驻I批量下单I完美运行
商城程序介绍: 2025全新版UI 新增全球多站点选择 PC端:vueelementui 用户端使用:uniapp 管理端使用:vueelementui 后台服务使用:springbootmybatisplusmysql 商城功能介绍: 商城含21种语言 代理…...
iOS实现一个强大的本地状态记录容器
我们开发中经常会遇到这样的场景,就是我们客户端用户进行了某个操作,这个操作影响了数据的状态,但是我们又不方便重新请求一次数据, 这个时候,就需要我们记录一下本地状态在内存中,随着业务越来越复杂&…...
【mysql】有索引和没有索引字段更新时锁的不同
结论 对于有索引的的字段作为更新条件,如果更加语句用上了索引,那么只会在对于的更新字段的索引和对于记录的主键索引上加上x锁 如果更新字段没有索引,由于需要全部扫描,那么就会给所有主键索引加上x,导致其他事务的更…...
机器学习的三个基本要素
机器学习的基本要素包括模型、学习准则(策略)和优化算法三个部分。机器学习方法之间的不同,主要来自其模型、学习准则(策略)、优化算法的不同。 模型 机器学习首要考虑的问题是学习什么样的模型(Model&am…...
神经机器翻译:联合学习对齐和翻译
大家读完觉得有帮助记得关注和点赞!!! 摘要 神经机器翻译是最近提出的机器翻译方法。与传统的统计机器翻译不同,神经机器翻译旨在构建一个可以联合调整以最大化翻译性能的单一神经网络。最近为神经机器翻译提出的模型通常属于编码…...
[Web 安全] PHP 反序列化漏洞 —— PHP 魔术方法
关注这个专栏的其他相关笔记:[Web 安全] 反序列化漏洞 - 学习笔记-CSDN博客 PHP 魔术方法 - 简介 - PHP 魔术方法 - 简单教程,简单编程PHP 中,以两个下划线 ( __ ) 开头方法称之为 「 魔术方法 」 这些 「 魔术方法 」 在 [PHP](/l/yufei/php…...
聆听PostgreSQL数据库的使用
参考:(1)零基础入门PostgreSQL教程 (2)菜鸟教程 文章目录 一、PostgreSQL是什么?二、基本使用1.下载2.操作(1)数据库(2)表 一、PostgreSQL是什么?…...
2025嵌入式软件开发工程师--音频方向
一、选择题(每题3分,共30分) 1.以下哪个不是C语言中的关键字?( ) A. int B. Float C. Define D. Return 2.以下代码的输出是: ( ) inta 5, b 10; printf("%d“, a b); A. 15 B.16 …...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
MeanFlow:何凯明新作,单步去噪图像生成新SOTA
1.简介 这篇文章介绍了一种名为MeanFlow的新型生成模型框架,旨在通过单步生成过程高效地将先验分布转换为数据分布。文章的核心创新在于引入了平均速度的概念,这一概念的引入使得模型能够通过单次函数评估完成从先验分布到数据分布的转换,显…...
