Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks
Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks
#paper/GFM/GNN-BASED# #paper/⭐⭐⭐#
注意:这篇文章是每个图一个GCN模型,而不是所有图一个GCN 模型
算是最早的涉及异配图的prompt了
贡献和动机:
-
非对称图对比学习(GraphACL)
提出一种预训练方法,通过非对称对比学习捕获节点间的高阶相似性,避免传统方法对同质图(homophily)的依赖,有效处理异质图。 -
统一任务模板
将预训练与下游任务(如节点分类、链接预测)统一为相似性计算模板,减少目标差异导致的负迁移问题。例如,节点分类通过类原型(class prototype)与节点的相似性进行预测。 -
自适配器与参数重用
重用预训练阶段的投影器(projector)作为下游任务的适配器(self-adapter),无需额外参数,显著提升调优效率。 -
自提示机制
- 结构提示:通过添加两跳邻居等结构信息增强上下文表示。
- 语义提示:利用节点属性(如替换邻接矩阵为单位矩阵)保留语义信息。
提示生成基于图自身信息,而非随机初始化,提升稳定性和泛化能力。
方法:
对比学习的三种方法:
作者使用了第三种方法,并认为 g ( ⋅ ) g(\cdot) g(⋅)可以引入语义信息
方法框架:
由于对应上面第三种方法,其对比损失可以为:
L = − 1 ∣ V ∣ ∑ v ∈ V 1 ∣ N ( v ) ∣ ∑ v + ∈ N ( v ) log exp ( z v T h v + / τ ) exp ( z v T h v + / τ ) + ∑ v − ∈ V − exp ( h v T h v − / τ ) , \mathcal{L}=-\frac{1}{|\mathcal{V}|}\sum_{v\in\mathcal{V}}\frac{1}{|\mathcal{N}(v)|}\sum_{v^+\in\mathcal{N}(v)}\log\frac{\exp(\mathbf{z}_v{}^\mathsf{T}\mathbf{h}_{v^+}/\tau)}{\exp(\mathbf{z}_v{}^\mathsf{T}\mathbf{h}_{v^+}/\tau)+\sum_{v^-\in\mathcal{V}^-}\exp(\mathbf{h}_v{}^\mathsf{T}\mathbf{h}_{v^-}/\tau)}, L=−∣V∣1∑v∈V∣N(v)∣1∑v+∈N(v)logexp(zvThv+/τ)+∑v−∈V−exp(hvThv−/τ)exp(zvThv+/τ),
其中,z是映射头g的输出。
节点分类任务
节点分类任务的话,作者采用了原型向量(prototype: C = { t 1 , t 2 , … , t C } \mathcal{C}=\{\mathbf{t}_1,\mathbf{t}_2,\ldots,\mathbf{t}_C\} C={t1,t2,…,tC}。作者通过labeled节点的token均值来初始化原型向量。
t c = 1 N c ∑ v ∈ V L , y v = c t v , ∀ c ∈ 1 , 2 , … C , \mathbf{t}_c=\frac{1}{N_c}\sum_{v\in\mathcal{V}_L,y_v=c}\mathbf{t}_v,\forall c\in1,2,\ldots C, tc=Nc1∑v∈VL,yv=ctv,∀c∈1,2,…C,
Self-prompt结构:
-
预训练的架构: θ ∗ , ϕ ∗ = arg min θ , ϕ L p r e ( f θ , g ϕ , G ) \theta^*,\phi^*=\arg\min_{\theta,\phi}\mathcal{L}_{pre}(f_\theta,g_\phi,\mathcal{G}) θ∗,ϕ∗=argminθ,ϕLpre(fθ,gϕ,G)
-
prompt时,GNN backbone应该是冻结的。作者认为 g ϕ g_{\phi} gϕ可以包含更多的语义,应该用于下游训练。因此下游任务的优化可以表示为: ϕ ∗ ∗ = arg min ϕ ∗ L d o w ( g ϕ ∗ , V L , Y ) \phi^{**}=\arg\min_{\phi^*}\mathcal{L}_{dow}(g_{\phi^*},\mathcal{V}_L,\mathcal{Y}) ϕ∗∗=argminϕ∗Ldow(gϕ∗,VL,Y)
-
自结构语义的构建:作者认为2-hop代表同配性,并包含丰富的语义信息。因此: t v = f θ ( G 2 ) [ v ] = f θ ( A 2 , X ) [ v ] \mathbf{t}_v=f_\theta(\mathcal{G}_2)[v]=f_\theta(\mathbf{A}_2,\mathbf{X})[v] tv=fθ(G2)[v]=fθ(A2,X)[v]
-
子语义提示:
s v = f θ ( G I ) [ v ] = f θ ( I , X ) [ v ] . \mathbf{s}_{v}=f_{\theta}(\mathcal{G}_{I})[v]=f_{\theta}(\mathbf{I},\mathbf{X})[v]. sv=fθ(GI)[v]=fθ(I,X)[v].
h v = f θ ( G ) [ v ] = f θ ( A , X ) [ v ] . \mathbf{h}_v=f_\theta(\mathcal{G})[v]=f_\theta(\mathbf{A},\mathbf{X})[v]. hv=fθ(G)[v]=fθ(A,X)[v].
t v = w v s v + ( 1 − w v ) h v , w v = s i m ( h v , s v ) , \mathbf{t}_v=w_v\mathbf{s}_v+(1-w_v)\mathbf{h}_v,w_v=sim(h_v,s_v), tv=wvsv+(1−wv)hv,wv=sim(hv,sv),
-
Prompt tuning:节点分类: L d o w = − ∑ v ∈ V L log exp ( t ′ v t ′ y v / τ ) exp ( t ′ v T t ′ y v / τ ) + ∑ c = 1 , c ≠ y v C exp ( t ′ v T t ′ c / τ ) , \mathcal{L}_{dow}=-\sum_{v\in\mathcal{V}_{L}}\log\frac{\exp(\mathbf{t^{\prime}}_{v}\mathbf{t^{\prime}}_{y_{v}}/\tau)}{\exp(\mathbf{t^{\prime}}_{v}^{\mathsf{T}}\mathbf{t^{\prime}}_{y_{v}}/\tau)+\sum_{c=1,c\neq y_{v}}^{C}\exp(\mathbf{t^{\prime}}_{v}^{\mathsf{T}}\mathbf{t^{\prime}}_{c}/\tau)}, Ldow=−∑v∈VLlogexp(t′vTt′yv/τ)+∑c=1,c=yvCexp(t′vTt′c/τ)exp(t′vt′yv/τ),其中, t ′ v = q ϕ ( t v ) \mathbf{t^{\prime}}_{v}=q_{\phi}(\mathbf{t}_{v}) t′v=qϕ(tv)
-
L d o w = − ∑ ( v , a , b ) ∈ T log exp ( t ′ v T t ′ a / τ ) exp ( t ′ v T t ′ a / τ ) + exp ( t ′ v T t ′ b / τ ) \mathcal{L}_{dow}=-\sum_{(v,a,b)\in\mathcal{T}}\log\frac{\exp(\mathbf{t^{\prime}}_v^\mathsf{T}\mathbf{t^{\prime}}_a/\tau)}{\exp(\mathbf{t^{\prime}}_v^\mathsf{T}\mathbf{t^{\prime}}_a/\tau)+\exp(\mathbf{t^{\prime}}_v^\mathsf{T}\mathbf{t^{\prime}}_b/\tau)} Ldow=−∑(v,a,b)∈Tlogexp(t′vTt′a/τ)+exp(t′vTt′b/τ)exp(t′vTt′a/τ)
结果:
相关文章:
Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks
Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks #paper/GFM/GNN-BASED# #paper/⭐⭐⭐# 注意:这篇文章是每个图一个GCN模型,而不是所有图一个GCN 模型 算是最早的涉及异配图的prompt了 贡献和动机: 非对…...
企业级-数据分类分级详细方案
一、方案背景 在数字化时代,数据成为企业和组织的核心资产。随着数据量的快速增长和数据应用场景的不断拓展,如何有效地管理和保护数据,确保数据的安全性、合规性和可用性,成为了亟待解决的问题。数据分类分级作为数据管理的基础工作,能够帮助企业清晰地了解自身的数据资…...
本地部署Qwen2.5-VL-7B-Instruct模型
本地部署Qwen2.5-VL-7B-Instruct模型 本地部署Permalink **创建环境** conda create -n qwenvl python3.11 -y# 报错: Solving environment: failedPackagesNotFoundError: The following packages are not available from current channels:# 处理: c…...
【前端】简单原生实例合集html,css,js
长期补充,建议关注收藏点赞。 目录 a标签设置不一样的花样(图片但不用img)侧边固定box分栏input各种类型iframe表单拖拽 a标签设置不一样的花样(图片但不用img) a标签里面不用嵌套img,直接设置为其bg-img即可 <!DOCTYPE html…...
【Spring】配置文件的使用
在Spring框架中,application.properties(或application.yml)文件用于配置Spring应用程序的各种属性。我们可以通过多种方式来使用这些配置,包括使用Value和ConfigurationProperties注解来绑定配置到Java对象。 下面是对不同配置类…...
MOM成功实施分享(七)电力电容制造MOM工艺分析与解决方案(第一部分)
声明:文章仅用于交流学习,不用于商业项目实施,图片来源于网络,如有侵犯权利,请联系作者及时删除。 本方案旨在对电力电容(PEC和PQM型号)制造工艺深度分析,结合管理要求设计MOM相关功…...
计算机毕业设计SpringBoot+Vue.js航空机票预定系统(源码+文档+PPT+讲解)
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
Python 爬取唐诗宋词三百首
你可以使用 requests 和 BeautifulSoup 来爬取《唐诗三百首》和《宋词三百首》的数据。以下是一个基本的 Python 爬虫示例,它从 中华诗词网 或类似的网站获取数据并保存为 JSON 文件。 import requests from bs4 import BeautifulSoup import json import time# 爬取…...
【二.提示词工程与实战应用篇】【3.Prompt调优:让AI更懂你的需求】
最近老张在朋友圈秀出用AI生成的国风水墨画,隔壁王姐用AI写了份惊艳全场的年终总结,就连楼下小卖部老板都在用AI生成营销文案。你看着自己跟AI对话时满屏的"我不太明白您的意思",是不是怀疑自己买了台假电脑?别慌,这可能是你的打开方式不对。今天咱们就聊聊这个…...
商城源码的框架
商城源码的框架通常是基于某种Web开发框架或者电子商务平台来构建的。以下是一些常见的商城源码框架: WooCommerce:基于WordPress的电子商务插件,适用于小型到中型的在线商店。 Magento:一个功能强大和灵活的开源电子商务平台&am…...
WordPress如何防Webshell、防篡改、防劫持,提升WP漏洞防护能力
WordPress是一款世界知名的CMS系统,不仅可以创建博客网站,还可以用于建设企业网站、下载网站、商城等各类网站。功能非常强大、结构科学合理,深受广大用户喜欢。 虽然WordPress非常优秀,但是为了保障网站安全,我们还是…...
Android Flow 示例
在Android开发的世界里,处理异步数据流一直是一个挑战。随着Kotlin的流行,Flow作为Kotlin协程库的一部分,为开发者提供了一种全新的方式来处理这些问题。今天,我将深入探讨Flow的设计理念,并通过具体的例子展示如何在实…...
刚安装docker并启动docker服务: systemctl restart docker报错解决
root:/home/lzw# sudo systemctl restart docker Job for docker.service failed because the control process exited with error code. See "systemctl status docker.service" and "journalctl -xeu docker.service" for details. 1、问题描述 启动doc…...
xss笔记与打靶(更新中)
这个文章好 https://blog.csdn.net/huangyongkang666/article/details/123624164?fromshareblogdetail&sharetypeblogdetail&sharerId123624164&sharereferPC&sharesource2401_88818565&sharefromfrom_link 什么是xss XSS(跨站脚本攻击&…...
游戏引擎学习第133天
仓库:https://gitee.com/mrxiao_com/2d_game_3 回顾并设定今天的主题 今天的任务是进一步优化背景资源的流式加载,尤其是在内存管理方面。昨天,我们实现了资源流式加载,让游戏在加载时可以动态地加载背景,而不是一开始就把所有资…...
【鸿蒙操作系统】- 1:实习阶段的一些总结
本文目录 1. 序2.鸿蒙与欧拉的概念微内核LiteOS鸿蒙微内核POSIX标准 3.实习干了些什么身份鉴别访问控制恶意代码防范安全审计入侵防范性能压测检查系统版本网络测试常见的linux测试命令 1. 序 之前在某国企实习的时候,有幸参与了鸿蒙系统、鸿蒙欧拉的项目ÿ…...
Qt基础入门-详解
前言 qt之路正式开启 💓 个人主页:普通young man-CSDN博客 ⏩ 文章专栏:C_普通young man的博客-CSDN博客 ⏩ 本人giee: 普通小青年 (pu-tong-young-man) - Gitee.com 若有问题 评论区见📝 🎉欢迎大家点赞ὄ…...
【前端】HTML 备忘清单(超级详细!)
文章目录 入门hello.html注释 Comment段落 ParagraphHTML 链接Image 标签文本格式标签标题Section Divisions内部框架HTML 中的 JavaScriptHTML 中的 CSS HTML5 标签页面标题导航HTML5 TagsHTML5 VideoHTML5 AudioHTML5 RubyHTML5 kdiHTML5 progressHTML5 mark HTML 表格Table …...
版图自动化连接算法开发 00004 ------ 给定一个点,添加一个中间点实现 Manhattan 方式连接两个给定的坐标点
版图自动化连接算法开发 00004 ------ 给定一个点,添加一个中间点实现 Manhattan 方式连接两个给定的坐标点 引言正文引言 必读文章 ------ 版图自动化连接算法开发 00001 ------ 直接连接两个给定的坐标点。 此处,我们对给定点的坐标进行一下限制,因为是只添加一个点,因…...
C# Enumerable类 之 数据筛选
总目录 前言 在 C# 中,System.Linq.Enumerable 类是 LINQ(Language Integrated Query)的核心组成部分,它提供了一系列静态方法,用于操作实现了 IEnumerable 接口的集合。通过这些方法,我们可以轻松地对集合…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
