当前位置: 首页 > news >正文

《解锁HarmonyOS NEXT高阶玩法:艺术图像识别功能开发全攻略》

在当今数字化时代,AI技术不断拓展其应用边界,为各行业带来前所未有的变革。在艺术领域,AI图像识别技术能够帮助艺术从业者、爱好者快速识别艺术品风格、作者,甚至挖掘艺术品背后的历史文化信息。本文将结合HarmonyOS NEXT API 12及以上版本,深入讲解如何开发一个具有艺术图像识别功能的应用,助力开发者掌握这一前沿技术,推动鸿蒙系统在艺术领域的创新应用。

技术原理与关键知识点

AI图像识别在艺术领域主要依赖卷积神经网络(CNN)。CNN通过构建多层卷积层和池化层,自动提取图像中的特征,如线条、颜色、纹理等,从而对图像进行分类识别。在HarmonyOS开发中,我们利用其丰富的API来实现图像的获取、预处理以及与AI模型的交互。

环境搭建

在开始开发前,确保你已经安装了HarmonyOS开发环境,包括DevEco Studio,并将其更新至支持NEXT API 12+的版本。同时,需要安装Python以及相关的依赖库,如 torch (用于深度学习模型处理)、 Pillow (用于图像读取和处理)。

# 安装torch,这里以CPU版本为例
pip install torch torchvision torchaudio
# 安装Pillow
pip install Pillow

图像获取与预处理

图像获取

在HarmonyOS应用中,可以通过文件选择器获取本地艺术图像文件。以下是一个简单的获取图像文件路径的代码示例:

from ohos import ability
from ohos.utils import bundle_toolclass MainAbility(ability.Ability):def on_start(self, intent):# 打开文件选择器获取图像文件路径file_path = self.present_file_chooser()if file_path:self.process_image(file_path)def present_file_chooser(self):# 简单示例,实际需根据HarmonyOS API实现文件选择逻辑# 这里假设返回一个文件路径字符串return "/data/user/0/your_app_package_name/files/artwork.jpg"def process_image(self, file_path):# 处理图像的逻辑将在此处实现pass

图像预处理

为了使图像适合AI模型处理,需要进行预处理,如调整大小、归一化等。

from PIL import Image
import torch
from torchvision import transformsdef preprocess_image(file_path):# 读取图像image = Image.open(file_path)# 定义图像变换transform = transforms.Compose([transforms.Resize((224, 224)),  # 调整图像大小为模型输入要求transforms.ToTensor(),  # 将图像转换为张量transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 归一化处理])image = transform(image)image = image.unsqueeze(0)  # 添加批次维度return image

AI模型构建与训练

这里我们以一个简单的预训练模型 ResNet18 为例,对其进行微调以适应艺术图像识别任务。

import torch
import torch.nn as nn
from torchvision.models import resnet18# 加载预训练的ResNet18模型
model = resnet18(pretrained=True)
# 修改最后一层全连接层,以适应艺术图像分类任务,假设我们有10个艺术风格类别
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

模型训练

假设我们已经准备好艺术图像数据集( train_loader ),可以进行模型训练。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)for epoch in range(10):  # 假设训练10个epochrunning_loss = 0.0for i, data in enumerate(train_loader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')

图像识别功能实现

在获取并预处理图像后,利用训练好的模型进行图像识别。

def predict_image(model, file_path):image = preprocess_image(file_path)image = image.to(next(model.parameters()).device)with torch.no_grad():outputs = model(image)_, predicted = torch.max(outputs.data, 1)return predicted.item()

案例应用:艺术风格识别应用开发

假设我们要开发一个艺术风格识别应用,用户上传艺术作品图像,应用返回识别出的艺术风格。

界面设计

使用HarmonyOS的UI组件,设计一个简单的界面,包含文件选择按钮和结果显示区域。

<DirectionalLayoutxmlns:ohos="http://schemas.huawei.com/res/ohos"ohos:height="match_parent"ohos:width="match_parent"ohos:orientation="vertical"ohos:padding="16vp"><Buttonohos:id="$+id:select_button"ohos:height="wrap_content"ohos:width="match_parent"ohos:text="选择艺术图像"ohos:layout_alignment="center_horizontal"ohos:top_margin="32vp"/><Textohos:id="$+id:result_text"ohos:height="wrap_content"ohos:width="match_parent"ohos:text="识别结果将显示在此处"ohos:layout_alignment="center_horizontal"ohos:top_margin="32vp"/></DirectionalLayout>

功能集成

在Python代码中,将图像获取、预处理、识别等功能与界面交互集成。

from ohos import ability
from ohos.aafwk.ability import AbilitySlice
from ohos.utils import bundle_tool
from your_image_processing_module import preprocess_image, predict_image
from your_model_module import model  # 导入训练好的模型class MainAbilitySlice(AbilitySlice):def on_start(self, intent):super().on_start(intent)self.setUIContent(ResourceTable.Layout_main_layout)select_button = self.find_component_by_id(ResourceTable.Id_select_button)select_button.set_listener(ability.ClickedListener(self.on_button_click))def on_button_click(self, view):file_path = self.present_file_chooser()if file_path:result = predict_image(model, file_path)result_text = self.find_component_by_id(ResourceTable.Id_result_text)result_text.set_text(f'识别结果:{self.get_style_name(result)}')def present_file_chooser(self):# 实现文件选择逻辑passdef get_style_name(self, index):# 根据索引返回艺术风格名称,假设我们有预定义的风格列表style_list = ['古典主义', '浪漫主义', '印象派', '后印象派', '立体派', '表现主义', '超现实主义', '抽象表现主义', '波普艺术', '极简主义']return style_list[index]

通过以上步骤,我们成功开发了一个基于HarmonyOS NEXT API 12+的艺术图像识别应用。开发者可以根据实际需求进一步优化模型、拓展功能,如增加图像标注、艺术品信息检索等,为艺术领域带来更多智能化的解决方案,推动HarmonyOS在艺术领域的广泛应用与创新发展。

相关文章:

《解锁HarmonyOS NEXT高阶玩法:艺术图像识别功能开发全攻略》

在当今数字化时代&#xff0c;AI技术不断拓展其应用边界&#xff0c;为各行业带来前所未有的变革。在艺术领域&#xff0c;AI图像识别技术能够帮助艺术从业者、爱好者快速识别艺术品风格、作者&#xff0c;甚至挖掘艺术品背后的历史文化信息。本文将结合HarmonyOS NEXT API 12及…...

Spring Boot的启动流程

Spring Boot 的启动流程是一个复杂且有序的过程&#xff1a; 创建SpringApplication实例 — 调用run方法 — 启动完成(发布应用启动事件&#xff0c;配置环境&#xff0c;创建ApplicationContext&#xff0c;准备ApplicationContext&#xff0c;刷新ApplicationContext[【创建B…...

【通俗讲解电子电路】——从零开始理解生活中的电路(三)

实际应用案例&#xff1a;生活中的电子电路 ——拆解你身边的“隐形工程师” 1. 手电筒电路&#xff1a;最简单的直流系统 电路组成 电源&#xff1a;2节1.5V电池&#xff08;串联3V&#xff09;。 开关&#xff1a;按钮控制回路通断。 LED&#xff1a;发光二极管&#xff…...

TypeScript系列01-类型系统全解析

本文总结了 TypeScript 的类型系统基础&#xff0c;涵盖了&#xff1a; TypeScript 的价值&#xff1a;静态类型检查为 JavaScript 添加了类型安全保障基本类型系统&#xff1a;从原始类型到特殊类型&#xff08;any、unknown、never&#xff09;的完整介绍类型注解与推断&…...

ragflow-mysql 启动失败案例分析

一、问题描述 1.拉取RAGflow镜像失败 dependency failed to start: container ragflow-mysql is unhealthy2. 查询日志 docker logs ragflow-mysql显示 出现[rootlocalhost docker]# docker logs ragflow-mysql Fatal glibc error: CPU does not support x86-64-v2 Fatal …...

SslConnection::SslConnection()详解

一、&#x1f50d; SslConnection::SslConnection() 详解 这个构造函数的主要作用是&#xff1a; 创建 SSL 对象创建 BIO&#xff08;I/O 缓冲区&#xff09;初始化 SSL 服务器模式绑定回调函数&#xff08;onRead() 处理接收数据&#xff09; &#x1f4cc; 1. 初始化 SSL 相…...

unity lua属性绑定刷新

我们现在有一个 角色属性类叫heroModel,内容如下,当heroModel中的等级发生变化的时候&#xff0c;我们需要刷新界面显示等级信息&#xff0c;通常我们是在收到等级升级成功的协议的时候&#xff0c;发送一个事件&#xff0c;UI界面接受到这个事件的时候&#xff0c;刷新一下等级…...

Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks

Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks ​#paper/GFM/GNN-BASED#​ #paper/⭐⭐⭐#​ 注意&#xff1a;这篇文章是每个图一个GCN模型&#xff0c;而不是所有图一个GCN 模型 算是最早的涉及异配图的prompt了 贡献和动机&#xff1a; 非对…...

企业级-数据分类分级详细方案

一、方案背景 在数字化时代,数据成为企业和组织的核心资产。随着数据量的快速增长和数据应用场景的不断拓展,如何有效地管理和保护数据,确保数据的安全性、合规性和可用性,成为了亟待解决的问题。数据分类分级作为数据管理的基础工作,能够帮助企业清晰地了解自身的数据资…...

本地部署Qwen2.5-VL-7B-Instruct模型

本地部署Qwen2.5-VL-7B-Instruct模型 本地部署Permalink **创建环境** conda create -n qwenvl python3.11 -y# 报错&#xff1a; Solving environment: failedPackagesNotFoundError: The following packages are not available from current channels:# 处理&#xff1a; c…...

【前端】简单原生实例合集html,css,js

长期补充&#xff0c;建议关注收藏点赞。 目录 a标签设置不一样的花样&#xff08;图片但不用img)侧边固定box分栏input各种类型iframe表单拖拽 a标签设置不一样的花样&#xff08;图片但不用img) a标签里面不用嵌套img&#xff0c;直接设置为其bg-img即可 <!DOCTYPE html…...

【Spring】配置文件的使用

在Spring框架中&#xff0c;application.properties&#xff08;或application.yml&#xff09;文件用于配置Spring应用程序的各种属性。我们可以通过多种方式来使用这些配置&#xff0c;包括使用Value和ConfigurationProperties注解来绑定配置到Java对象。 下面是对不同配置类…...

MOM成功实施分享(七)电力电容制造MOM工艺分析与解决方案(第一部分)

声明&#xff1a;文章仅用于交流学习&#xff0c;不用于商业项目实施&#xff0c;图片来源于网络&#xff0c;如有侵犯权利&#xff0c;请联系作者及时删除。 本方案旨在对电力电容&#xff08;PEC和PQM型号&#xff09;制造工艺深度分析&#xff0c;结合管理要求设计MOM相关功…...

计算机毕业设计SpringBoot+Vue.js航空机票预定系统(源码+文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

Python 爬取唐诗宋词三百首

你可以使用 requests 和 BeautifulSoup 来爬取《唐诗三百首》和《宋词三百首》的数据。以下是一个基本的 Python 爬虫示例&#xff0c;它从 中华诗词网 或类似的网站获取数据并保存为 JSON 文件。 import requests from bs4 import BeautifulSoup import json import time# 爬取…...

【二.提示词工程与实战应用篇】【3.Prompt调优:让AI更懂你的需求】

最近老张在朋友圈秀出用AI生成的国风水墨画,隔壁王姐用AI写了份惊艳全场的年终总结,就连楼下小卖部老板都在用AI生成营销文案。你看着自己跟AI对话时满屏的"我不太明白您的意思",是不是怀疑自己买了台假电脑?别慌,这可能是你的打开方式不对。今天咱们就聊聊这个…...

商城源码的框架

商城源码的框架通常是基于某种Web开发框架或者电子商务平台来构建的。以下是一些常见的商城源码框架&#xff1a; WooCommerce&#xff1a;基于WordPress的电子商务插件&#xff0c;适用于小型到中型的在线商店。 Magento&#xff1a;一个功能强大和灵活的开源电子商务平台&am…...

WordPress如何防Webshell、防篡改、防劫持,提升WP漏洞防护能力

WordPress是一款世界知名的CMS系统&#xff0c;不仅可以创建博客网站&#xff0c;还可以用于建设企业网站、下载网站、商城等各类网站。功能非常强大、结构科学合理&#xff0c;深受广大用户喜欢。 虽然WordPress非常优秀&#xff0c;但是为了保障网站安全&#xff0c;我们还是…...

Android Flow 示例

在Android开发的世界里&#xff0c;处理异步数据流一直是一个挑战。随着Kotlin的流行&#xff0c;Flow作为Kotlin协程库的一部分&#xff0c;为开发者提供了一种全新的方式来处理这些问题。今天&#xff0c;我将深入探讨Flow的设计理念&#xff0c;并通过具体的例子展示如何在实…...

刚安装docker并启动docker服务: systemctl restart docker报错解决

root:/home/lzw# sudo systemctl restart docker Job for docker.service failed because the control process exited with error code. See "systemctl status docker.service" and "journalctl -xeu docker.service" for details. 1、问题描述 启动doc…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践

01技术背景与业务挑战 某短视频点播企业深耕国内用户市场&#xff0c;但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大&#xff0c;传统架构已较难满足当前企业发展的需求&#xff0c;企业面临着三重挑战&#xff1a; ① 业务&#xff1a;国内用户访问海外服…...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...