大模型Agent:人工智能的崭新形态与未来愿景
在人工智能技术高歌猛进的当下,大模型 Agent 作为 AI 领域的关键研究方向,正日益彰显出其独有的魅力以及广阔无垠的应用前景。大模型 Agent 不但具备对环境的感知、自主的理解、决策的制定以及行动的执行能力,而且能够游刃有余地应对繁杂任务,已然成为达成智能化、自动化与高效化的关键利器
一、定义与特质
大模型 Agent 乃是构建于大规模语言模型之上的智能实体,融合了自主性、交互性、反应性以及主动性等多元特质。具体来讲,Agent 拥有专属的计算资源和行为控制机制,即便在没有外界直接操控的状况下,也能够依据自身的内部状态以及所感知到的外部环境信息,独立自主地决定并掌控自身的行为。与此同时,Agent 还能够和其他 Agent 或者系统展开形式多样的交互,达成协同作业,并针对环境的变化及时作出反应。
二、技术架构与应用范畴

当前agent架构主要是以LLM作为Agent的大脑 (brain) , 辅以几个关键组成部分:
-
规划(planning)
-
定义与功能
定义:在Agent的框架中,Planning指的是Agent为了达成某个特定目标而进行的决策过程,这一过程涉及生成、评估和选择行动序列。
功能:
-
任务分解:将复杂的任务分解为多个可管理的子任务,从而降低问题的复杂度。
-
决策制定:根据当前的环境状态和目标,选择最合适的行动序列。
-
预测与评估:预测不同行动序列的可能结果,并评估其优劣,以便做出最优决策。
-
Planning的主要步骤
Agent中的Planning过程通常可以概括为以下几个步骤:
-
感知(Perception):Agent首先需要从环境中收集信息,包括当前的环境状态、可用的资源等。
-
理解(Understanding):对收集到的信息进行处理和理解,明确任务目标和约束条件。
-
规划(Planning):
-
任务分解:将复杂的任务分解为多个子任务。
-
生成行动序列:为每个子任务生成可能的行动序列。
-
评估与选择:评估不同行动序列的优劣,并选择最优的行动序列。
-
-
执行(Execution):根据选定的行动序列执行具体的行动。
-
反馈(Feedback):从环境中获取执行结果的反馈,用于调整后续的规划过程。
-
记忆(Memory)
Agent中的Memory通常可以分为两大类:短期记忆(Short-term Memory, STM)和长期记忆(Long-term Memory, LTM)。
-
Memory的分类
-
短期记忆(STM):
-
定义:短期记忆用于存储暂时性的信息,这些信息是Agent当前正在处理或即将处理的。
-
特点:短期记忆容量有限,且信息保留时间较短,通常只能维持几秒钟到几分钟。
-
实现方式:短期记忆一般通过内部缓存或工作内存来实现,如Transformer模型中的有限上下文窗口。
-
-
长期记忆(LTM):
-
定义:长期记忆用于存储永久性的信息,这些信息对Agent的长期行为和目标实现至关重要。
-
特点:长期记忆容量大,信息保留时间长,可以存储从几天到几十年不等的信息。
-
实现方式:长期记忆通常通过外部存储系统来实现,如向量数据库、关系数据库或文件系统。
-
-
Memory的组成
Agent的Memory不仅限于上述的简单分类,还可以进一步细化为多个组成部分,以满足不同的需求。以下是一些常见的Memory组成部分:
-
工作记忆(Working Memory):
-
工作记忆是短期记忆的一种具体实现,用于存储当前任务所需的信息,如任务上下文、中间结果等。
-
工作记忆对于Agent在执行复杂任务时进行信息整合和推理至关重要。
-
-
知识库(Knowledge Base):
-
知识库是长期记忆的一种形式,用于存储Agent的领域知识和规则。
-
知识库可以分为事实知识(Factual Knowledge)和规则知识(Rule-based Knowledge)两种类型。
-
事实知识包括具体的实体、属性和关系等信息;规则知识则定义了这些实体和属性之间的逻辑关系和行为规则。
-
-
语义网(Semantic Web):
-
语义网是一种基于Web的知识表示和管理的技术,可以用于存储和共享Agent的语义信息。
-
语义网可以分为语义网数据库(Semantic Web Database)和语义网服务(Semantic Web Service)两种类型。
-
语义网技术有助于Agent理解和处理复杂的语义关系,提高信息处理的准确性和效率。
-
-
Memory的作用
Memory在Agent中发挥着多种重要作用,包括但不限于以下几个方面:
-
信息存储:Memory为Agent提供了存储信息的能力,使其能够在需要时回忆和利用这些信息。
-
决策支持:通过存储和处理信息,Memory为Agent的决策过程提供了必要的支持,使其能够做出更加准确和合理的决策。
-
任务执行:在执行任务时,Memory为Agent提供了必要的上下文信息和中间结果,有助于其顺利完成任务。
-
学习与适应:通过不断积累和更新Memory中的信息,Agent能够不断学习和适应新环境和新任务。
-
工具调用(Tool use)
-
定义与意义
-
定义:Tool Use是指Agent能够识别、选择和利用外部工具或系统来完成任务或解决问题的一种能力。这些外部工具或系统可以是API、数据库、搜索引擎、计算器等。
-
意义:通过Tool Use,Agent能够突破自身能力的限制,实现更复杂的任务执行和更广泛的功能覆盖。同时,Tool Use也使得Agent更加灵活和智能,能够根据不同的任务需求和环境变化来调用合适的工具。
-
Tool Use的实现方式
-
API调用:Agent可以通过调用外部API来获取数据、执行计算或进行其他操作。例如,在编写代码时,Agent可以调用编程语言的API来实现特定的功能;在搜索信息时,Agent可以调用搜索引擎的API来获取相关结果。
-
数据库交互:Agent可以与数据库进行交互,查询、更新或存储数据。这对于需要处理大量数据或需要持久化存储的任务尤为重要。
-
搜索引擎利用:Agent可以利用搜索引擎来搜索和获取相关信息,以支持其决策和任务执行。搜索引擎的广泛覆盖和快速响应使得Agent能够快速获取所需信息。
-
工具链集成:Agent可以将多个工具或系统集成到一个工具链中,通过协同工作来完成复杂任务。这种集成方式可以充分利用各个工具的优势,提高任务执行的效率和准确性。
在应用范畴方面,大模型 Agent 已然展露了磅礴的潜力。譬如,在编程开发领域,Agent 能够成为自动化代码生成与错误修复的得力工具;在数据科学范畴,Agent 能够充当数据科学家的角色,自主地处置海量数据,挖掘隐匿于数据背后的模式与趋势。此外,面向业务场景的 Agent 更是成为企业数字化转型的强大助推器,通过与企业既有的业务系统实现无缝衔接,自动识别并处理业务流程中的各类任务,提升业务处理的效率与精准度。
三、优势与挑战
大模型 Agent 的优势体现于其高度的智能化、自主化以及灵活性。它能够依据不同的应用场景和任务需求,自主调适行为策略,达成更为精准和高效的任务执行。同时,Agent 还具备持续学习的能力,能够不断优化自身性能,以应对日益繁杂多变的环境。
然而,大模型 Agent 的发展亦面临众多挑战。首先,如何提升 Agent 在自主性、交互性、反应性和主动性等方面的性能,乃是当下研究的重点课题。其次,Agent 在处置复杂任务时,需要海量的数据用于训练和优化,而数据的获取与处理无疑是一项艰巨的挑战。再者,Agent 的自主性和智能化也引发了一定的安全隐忧,需要采取更为严苛的安全举措来保障系统的安全性。
四、未来展望
伴随 AI 技术的持续发展与进步,大模型 Agent 的智能化水平将会不断攀升,能够更为智能地完成各类任务。同时,Agent 的自主化程度也将不断提高,减少人工干预的需求,达成更为高效的自动化服务。此外,Agent 还将逐步应用于更多的场景和任务之中,例如智能家居、自动驾驶、智能客服等等,进而提升人们的生活品质和工作效率。
在未来,大模型 Agent 之间还将逐步实现协同作业,通过构建多 Agent 系统,达成更为复杂和高效的任务执行。这将促使 AI 系统能够更好地适应复杂多变的环境,为人类的生产和生活提供更为全面、深入的支撑。
大模型 Agent 作为人工智能领域的重要研究方向,具备巨大的潜力和广阔的发展前景。尽管当下仍面临一些技术和安全等层面的挑战,但随着技术的不断发展和完善,坚信大模型 Agent 必将在更多的应用场景中发挥关键作用,推动人工智能技术的进一步发展。
相关文章:
大模型Agent:人工智能的崭新形态与未来愿景
在人工智能技术高歌猛进的当下,大模型 Agent 作为 AI 领域的关键研究方向,正日益彰显出其独有的魅力以及广阔无垠的应用前景。大模型 Agent 不但具备对环境的感知、自主的理解、决策的制定以及行动的执行能力,而且能够游刃有余地应对繁杂任务…...
专题二最大连续1的个数|||
1.题目 题目分析: 给一个数字k,可以把数组里的0改成1,但是只能改k次,然后该变得到的数组能找到最长的子串且都是1。 2.算法原理 这里不用真的把0变成1,因为改了比较麻烦,下次用就要改回成1,这…...
【ORACLE】ORACLE19C在19.13版本前的一个严重BUG-24761824
背景 最近在某客户的ORACLE开发环境(oracle 19.10)中,发现一个非常奇怪情况, 开发人员反馈,有一条SQL,查询了两个sum函数作为两个字段, select sum(c1),sum(c2) from ...当两个sum一起出现时,第一个sum的结果不对&am…...
2025国家护网HVV高频面试题总结来了03(题目+回答)
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 0x1 高频面试题第一套 0x2 高频面试题第二套 0x3 高频面试题第三套 0x4高频面试题第四套 0x1 高频面试题…...
CentOS vs Ubuntu - 常用命令深度对比及最佳实践指南20250302
CentOS vs Ubuntu - 常用命令深度对比及最佳实践指南 引言 在 Linux 服务器操作系统领域,CentOS 和 Ubuntu 是广泛采用的发行版。它们在命令集、默认工具链及生态系统方面各有特点。本文深入剖析 CentOS 与 Ubuntu 在常用命令层面的异同,并结合实践案例…...
SQL命令详解之常用函数
目录 1 简介 2 字符串函数 2.1 字符串函数语法 2.2 字符串函数练习 3 数学函数 3.1 数学函数语法 3.2 数学函数练习 4 日期时间函数 4.1 日期时间函数语法 4.2 日期时间函数练习 5 条件函数 5.1 条件函数语法 5.2 条件函数练习 6 总结 1 简介 在SQL中我们经常会用…...
IndexError: index 0 is out of bounds for axis 1 with size 0
IndexError: index 0 is out of bounds for axis 1 with size 0 欢迎来到英杰社区,这里是博主英杰https://bbs.csdn.net/topics/617804998 报错原因 数组或数据结构为空 如果数组或 DataFrame 在指定的维度上没有任何元素(例如,没有列&#x…...
C++学习之C++初识、C++对C语言增强、对C语言扩展
一.C初识 1.C简介 2.第一个C程序 //#include <iostream> //iostream 相当于 C语言下的 stdio.h i - input 输入 o -output 输出 //using namespace std; //using 使用 namespace 命名空间 std 标准 ,理解为打开一个房间,房间里有我们所需…...
k8s面试题总结(八)
1.K8s部署服务的时候,pod一直处于pending状态,无法部署,说明可能的原因 Node节点的资源不足,yaml文件资源限制中分配的内存,cpu资源太大,node宿主机资源没那么大,导致无法部署。部署pod的yaml文…...
《今日-AI-编程-人工智能日报》
一、AI行业动态 荣耀发布“荣耀阿尔法战略” 荣耀在“2025世界移动通信大会”上宣布,将从智能手机制造商转型为全球领先的AI终端生态公司,并计划未来五年投入100亿美元建设AI设备生态。荣耀展示了基于GUI的个人移动AI智能体,并推出多款AI终端…...
Koupleless 2024 年度报告 2025 规划展望
Koupleless 2024 年度报告 & 2025 规划展望 赵真灵 (花名:有济) Koupleless 负责人 蚂蚁集团技术专家 Koupleless 社区的开发和维护者,曾负责基于 K8s 的应用研发运维平台、Node/Pod 多级弹性伸缩与产品建设,当前主…...
C与C++中inline关键字的深入解析与使用指南
文章目录 引言一、历史背景与设计哲学1.1 C中的inline1.2 C中的inline 二、核心机制对比2.1 编译行为2.2 链接模型2.3 存储类说明符(详细解析)C的灵活组合C的限制原理 补充说明: 三、典型应用场景3.1 C中的使用场景3.2 C中的使用场景 四、现代…...
记录linux安装mysql后链接不上的解决方法
首先确保是否安装成功 systemctl status mysql 如果没有安装的话,执行命令安装 sudo apt install mysql-server 安装完成后,执行第一步检测是否成功。 通常初始是没有密码的,直接登陆 sudo mysql -u root 登录后执行以下命令修改密码&…...
Java 大视界 -- Java 大数据在智能金融反欺诈中的技术实现与案例分析(114)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...
01_NLP基础之文本处理的基本方法
自然语言处理入门 自然语言处理(Natural Language Processing, 简称NLP)是计算机科学与语言学中关注于计算机与人类语言间转换的领域,主要目标是让机器能够理解和生成自然语言,这样人们可以通过语言与计算机进行更自然的互动。 …...
(十 六)趣学设计模式 之 责任链模式!
目录 一、 啥是责任链模式?二、 为什么要用责任链模式?三、 责任链模式的实现方式四、 责任链模式的优缺点五、 责任链模式的应用场景六、 总结 🌟我的其他文章也讲解的比较有趣😁,如果喜欢博主的讲解方式,…...
动态规划/贪心算法
一、动态规划 动态规划 是一种用于解决优化问题的算法设计技术,尤其适用于具有重叠子问题和最优子结构性质的问题。它通过将复杂问题分解为更简单的子问题,并保存这些子问题的解以避免重复计算,从而提高效率。 动态规划的核心思想 最优子结…...
PH热榜 | 2025-03-04
1. MGX 标语:第一支人工智能开发团队 介绍:MGX(MetaGPT X)是一个基于真实软件标准操作程序(SOP)的多代理人工智能平台。在这里,你可以随时与AI团队的领导、产品经理、架构师、工程师和数据分析…...
Mybatis-Plus 插件机制与自定义插件实现
1. Mybatis-Plus 插件系统概述 Mybatis-Plus 提供了一个简单而强大的插件机制,允许开发者在 MyBatis 执行 SQL 的过程中插入自定义逻辑。通过插件机制,用户可以实现对 SQL 执行过程的拦截和修改。Mybatis-Plus 插件基于 MyBatis 的拦截器模式进行实现&a…...
开源表单、投票、测评平台部署教程
填鸭表单联合宝塔面板深度定制,自宝塔面板 9.2 版本开始,在宝塔面板-软件商店中可以一键部署填鸭表单系统。 简单操作即可拥有属于自己的表单问卷系统,快速赋能业务。即使小白用户也能轻松上手。 社区版体验地址:https://demo.tduckapp.com/home 前端项目地址: tduck-fro…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
