大模型Agent:人工智能的崭新形态与未来愿景
在人工智能技术高歌猛进的当下,大模型 Agent 作为 AI 领域的关键研究方向,正日益彰显出其独有的魅力以及广阔无垠的应用前景。大模型 Agent 不但具备对环境的感知、自主的理解、决策的制定以及行动的执行能力,而且能够游刃有余地应对繁杂任务,已然成为达成智能化、自动化与高效化的关键利器
一、定义与特质
大模型 Agent 乃是构建于大规模语言模型之上的智能实体,融合了自主性、交互性、反应性以及主动性等多元特质。具体来讲,Agent 拥有专属的计算资源和行为控制机制,即便在没有外界直接操控的状况下,也能够依据自身的内部状态以及所感知到的外部环境信息,独立自主地决定并掌控自身的行为。与此同时,Agent 还能够和其他 Agent 或者系统展开形式多样的交互,达成协同作业,并针对环境的变化及时作出反应。
二、技术架构与应用范畴

当前agent架构主要是以LLM作为Agent的大脑 (brain) , 辅以几个关键组成部分:
-
规划(planning)
-
定义与功能
定义:在Agent的框架中,Planning指的是Agent为了达成某个特定目标而进行的决策过程,这一过程涉及生成、评估和选择行动序列。
功能:
-
任务分解:将复杂的任务分解为多个可管理的子任务,从而降低问题的复杂度。
-
决策制定:根据当前的环境状态和目标,选择最合适的行动序列。
-
预测与评估:预测不同行动序列的可能结果,并评估其优劣,以便做出最优决策。
-
Planning的主要步骤
Agent中的Planning过程通常可以概括为以下几个步骤:
-
感知(Perception):Agent首先需要从环境中收集信息,包括当前的环境状态、可用的资源等。
-
理解(Understanding):对收集到的信息进行处理和理解,明确任务目标和约束条件。
-
规划(Planning):
-
任务分解:将复杂的任务分解为多个子任务。
-
生成行动序列:为每个子任务生成可能的行动序列。
-
评估与选择:评估不同行动序列的优劣,并选择最优的行动序列。
-
-
执行(Execution):根据选定的行动序列执行具体的行动。
-
反馈(Feedback):从环境中获取执行结果的反馈,用于调整后续的规划过程。
-
记忆(Memory)
Agent中的Memory通常可以分为两大类:短期记忆(Short-term Memory, STM)和长期记忆(Long-term Memory, LTM)。
-
Memory的分类
-
短期记忆(STM):
-
定义:短期记忆用于存储暂时性的信息,这些信息是Agent当前正在处理或即将处理的。
-
特点:短期记忆容量有限,且信息保留时间较短,通常只能维持几秒钟到几分钟。
-
实现方式:短期记忆一般通过内部缓存或工作内存来实现,如Transformer模型中的有限上下文窗口。
-
-
长期记忆(LTM):
-
定义:长期记忆用于存储永久性的信息,这些信息对Agent的长期行为和目标实现至关重要。
-
特点:长期记忆容量大,信息保留时间长,可以存储从几天到几十年不等的信息。
-
实现方式:长期记忆通常通过外部存储系统来实现,如向量数据库、关系数据库或文件系统。
-
-
Memory的组成
Agent的Memory不仅限于上述的简单分类,还可以进一步细化为多个组成部分,以满足不同的需求。以下是一些常见的Memory组成部分:
-
工作记忆(Working Memory):
-
工作记忆是短期记忆的一种具体实现,用于存储当前任务所需的信息,如任务上下文、中间结果等。
-
工作记忆对于Agent在执行复杂任务时进行信息整合和推理至关重要。
-
-
知识库(Knowledge Base):
-
知识库是长期记忆的一种形式,用于存储Agent的领域知识和规则。
-
知识库可以分为事实知识(Factual Knowledge)和规则知识(Rule-based Knowledge)两种类型。
-
事实知识包括具体的实体、属性和关系等信息;规则知识则定义了这些实体和属性之间的逻辑关系和行为规则。
-
-
语义网(Semantic Web):
-
语义网是一种基于Web的知识表示和管理的技术,可以用于存储和共享Agent的语义信息。
-
语义网可以分为语义网数据库(Semantic Web Database)和语义网服务(Semantic Web Service)两种类型。
-
语义网技术有助于Agent理解和处理复杂的语义关系,提高信息处理的准确性和效率。
-
-
Memory的作用
Memory在Agent中发挥着多种重要作用,包括但不限于以下几个方面:
-
信息存储:Memory为Agent提供了存储信息的能力,使其能够在需要时回忆和利用这些信息。
-
决策支持:通过存储和处理信息,Memory为Agent的决策过程提供了必要的支持,使其能够做出更加准确和合理的决策。
-
任务执行:在执行任务时,Memory为Agent提供了必要的上下文信息和中间结果,有助于其顺利完成任务。
-
学习与适应:通过不断积累和更新Memory中的信息,Agent能够不断学习和适应新环境和新任务。
-
工具调用(Tool use)
-
定义与意义
-
定义:Tool Use是指Agent能够识别、选择和利用外部工具或系统来完成任务或解决问题的一种能力。这些外部工具或系统可以是API、数据库、搜索引擎、计算器等。
-
意义:通过Tool Use,Agent能够突破自身能力的限制,实现更复杂的任务执行和更广泛的功能覆盖。同时,Tool Use也使得Agent更加灵活和智能,能够根据不同的任务需求和环境变化来调用合适的工具。
-
Tool Use的实现方式
-
API调用:Agent可以通过调用外部API来获取数据、执行计算或进行其他操作。例如,在编写代码时,Agent可以调用编程语言的API来实现特定的功能;在搜索信息时,Agent可以调用搜索引擎的API来获取相关结果。
-
数据库交互:Agent可以与数据库进行交互,查询、更新或存储数据。这对于需要处理大量数据或需要持久化存储的任务尤为重要。
-
搜索引擎利用:Agent可以利用搜索引擎来搜索和获取相关信息,以支持其决策和任务执行。搜索引擎的广泛覆盖和快速响应使得Agent能够快速获取所需信息。
-
工具链集成:Agent可以将多个工具或系统集成到一个工具链中,通过协同工作来完成复杂任务。这种集成方式可以充分利用各个工具的优势,提高任务执行的效率和准确性。
在应用范畴方面,大模型 Agent 已然展露了磅礴的潜力。譬如,在编程开发领域,Agent 能够成为自动化代码生成与错误修复的得力工具;在数据科学范畴,Agent 能够充当数据科学家的角色,自主地处置海量数据,挖掘隐匿于数据背后的模式与趋势。此外,面向业务场景的 Agent 更是成为企业数字化转型的强大助推器,通过与企业既有的业务系统实现无缝衔接,自动识别并处理业务流程中的各类任务,提升业务处理的效率与精准度。
三、优势与挑战
大模型 Agent 的优势体现于其高度的智能化、自主化以及灵活性。它能够依据不同的应用场景和任务需求,自主调适行为策略,达成更为精准和高效的任务执行。同时,Agent 还具备持续学习的能力,能够不断优化自身性能,以应对日益繁杂多变的环境。
然而,大模型 Agent 的发展亦面临众多挑战。首先,如何提升 Agent 在自主性、交互性、反应性和主动性等方面的性能,乃是当下研究的重点课题。其次,Agent 在处置复杂任务时,需要海量的数据用于训练和优化,而数据的获取与处理无疑是一项艰巨的挑战。再者,Agent 的自主性和智能化也引发了一定的安全隐忧,需要采取更为严苛的安全举措来保障系统的安全性。
四、未来展望
伴随 AI 技术的持续发展与进步,大模型 Agent 的智能化水平将会不断攀升,能够更为智能地完成各类任务。同时,Agent 的自主化程度也将不断提高,减少人工干预的需求,达成更为高效的自动化服务。此外,Agent 还将逐步应用于更多的场景和任务之中,例如智能家居、自动驾驶、智能客服等等,进而提升人们的生活品质和工作效率。
在未来,大模型 Agent 之间还将逐步实现协同作业,通过构建多 Agent 系统,达成更为复杂和高效的任务执行。这将促使 AI 系统能够更好地适应复杂多变的环境,为人类的生产和生活提供更为全面、深入的支撑。
大模型 Agent 作为人工智能领域的重要研究方向,具备巨大的潜力和广阔的发展前景。尽管当下仍面临一些技术和安全等层面的挑战,但随着技术的不断发展和完善,坚信大模型 Agent 必将在更多的应用场景中发挥关键作用,推动人工智能技术的进一步发展。
相关文章:
大模型Agent:人工智能的崭新形态与未来愿景
在人工智能技术高歌猛进的当下,大模型 Agent 作为 AI 领域的关键研究方向,正日益彰显出其独有的魅力以及广阔无垠的应用前景。大模型 Agent 不但具备对环境的感知、自主的理解、决策的制定以及行动的执行能力,而且能够游刃有余地应对繁杂任务…...
专题二最大连续1的个数|||
1.题目 题目分析: 给一个数字k,可以把数组里的0改成1,但是只能改k次,然后该变得到的数组能找到最长的子串且都是1。 2.算法原理 这里不用真的把0变成1,因为改了比较麻烦,下次用就要改回成1,这…...
【ORACLE】ORACLE19C在19.13版本前的一个严重BUG-24761824
背景 最近在某客户的ORACLE开发环境(oracle 19.10)中,发现一个非常奇怪情况, 开发人员反馈,有一条SQL,查询了两个sum函数作为两个字段, select sum(c1),sum(c2) from ...当两个sum一起出现时,第一个sum的结果不对&am…...
2025国家护网HVV高频面试题总结来了03(题目+回答)
网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 0x1 高频面试题第一套 0x2 高频面试题第二套 0x3 高频面试题第三套 0x4高频面试题第四套 0x1 高频面试题…...
CentOS vs Ubuntu - 常用命令深度对比及最佳实践指南20250302
CentOS vs Ubuntu - 常用命令深度对比及最佳实践指南 引言 在 Linux 服务器操作系统领域,CentOS 和 Ubuntu 是广泛采用的发行版。它们在命令集、默认工具链及生态系统方面各有特点。本文深入剖析 CentOS 与 Ubuntu 在常用命令层面的异同,并结合实践案例…...
SQL命令详解之常用函数
目录 1 简介 2 字符串函数 2.1 字符串函数语法 2.2 字符串函数练习 3 数学函数 3.1 数学函数语法 3.2 数学函数练习 4 日期时间函数 4.1 日期时间函数语法 4.2 日期时间函数练习 5 条件函数 5.1 条件函数语法 5.2 条件函数练习 6 总结 1 简介 在SQL中我们经常会用…...
IndexError: index 0 is out of bounds for axis 1 with size 0
IndexError: index 0 is out of bounds for axis 1 with size 0 欢迎来到英杰社区,这里是博主英杰https://bbs.csdn.net/topics/617804998 报错原因 数组或数据结构为空 如果数组或 DataFrame 在指定的维度上没有任何元素(例如,没有列&#x…...
C++学习之C++初识、C++对C语言增强、对C语言扩展
一.C初识 1.C简介 2.第一个C程序 //#include <iostream> //iostream 相当于 C语言下的 stdio.h i - input 输入 o -output 输出 //using namespace std; //using 使用 namespace 命名空间 std 标准 ,理解为打开一个房间,房间里有我们所需…...
k8s面试题总结(八)
1.K8s部署服务的时候,pod一直处于pending状态,无法部署,说明可能的原因 Node节点的资源不足,yaml文件资源限制中分配的内存,cpu资源太大,node宿主机资源没那么大,导致无法部署。部署pod的yaml文…...
《今日-AI-编程-人工智能日报》
一、AI行业动态 荣耀发布“荣耀阿尔法战略” 荣耀在“2025世界移动通信大会”上宣布,将从智能手机制造商转型为全球领先的AI终端生态公司,并计划未来五年投入100亿美元建设AI设备生态。荣耀展示了基于GUI的个人移动AI智能体,并推出多款AI终端…...
Koupleless 2024 年度报告 2025 规划展望
Koupleless 2024 年度报告 & 2025 规划展望 赵真灵 (花名:有济) Koupleless 负责人 蚂蚁集团技术专家 Koupleless 社区的开发和维护者,曾负责基于 K8s 的应用研发运维平台、Node/Pod 多级弹性伸缩与产品建设,当前主…...
C与C++中inline关键字的深入解析与使用指南
文章目录 引言一、历史背景与设计哲学1.1 C中的inline1.2 C中的inline 二、核心机制对比2.1 编译行为2.2 链接模型2.3 存储类说明符(详细解析)C的灵活组合C的限制原理 补充说明: 三、典型应用场景3.1 C中的使用场景3.2 C中的使用场景 四、现代…...
记录linux安装mysql后链接不上的解决方法
首先确保是否安装成功 systemctl status mysql 如果没有安装的话,执行命令安装 sudo apt install mysql-server 安装完成后,执行第一步检测是否成功。 通常初始是没有密码的,直接登陆 sudo mysql -u root 登录后执行以下命令修改密码&…...
Java 大视界 -- Java 大数据在智能金融反欺诈中的技术实现与案例分析(114)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...
01_NLP基础之文本处理的基本方法
自然语言处理入门 自然语言处理(Natural Language Processing, 简称NLP)是计算机科学与语言学中关注于计算机与人类语言间转换的领域,主要目标是让机器能够理解和生成自然语言,这样人们可以通过语言与计算机进行更自然的互动。 …...
(十 六)趣学设计模式 之 责任链模式!
目录 一、 啥是责任链模式?二、 为什么要用责任链模式?三、 责任链模式的实现方式四、 责任链模式的优缺点五、 责任链模式的应用场景六、 总结 🌟我的其他文章也讲解的比较有趣😁,如果喜欢博主的讲解方式,…...
动态规划/贪心算法
一、动态规划 动态规划 是一种用于解决优化问题的算法设计技术,尤其适用于具有重叠子问题和最优子结构性质的问题。它通过将复杂问题分解为更简单的子问题,并保存这些子问题的解以避免重复计算,从而提高效率。 动态规划的核心思想 最优子结…...
PH热榜 | 2025-03-04
1. MGX 标语:第一支人工智能开发团队 介绍:MGX(MetaGPT X)是一个基于真实软件标准操作程序(SOP)的多代理人工智能平台。在这里,你可以随时与AI团队的领导、产品经理、架构师、工程师和数据分析…...
Mybatis-Plus 插件机制与自定义插件实现
1. Mybatis-Plus 插件系统概述 Mybatis-Plus 提供了一个简单而强大的插件机制,允许开发者在 MyBatis 执行 SQL 的过程中插入自定义逻辑。通过插件机制,用户可以实现对 SQL 执行过程的拦截和修改。Mybatis-Plus 插件基于 MyBatis 的拦截器模式进行实现&a…...
开源表单、投票、测评平台部署教程
填鸭表单联合宝塔面板深度定制,自宝塔面板 9.2 版本开始,在宝塔面板-软件商店中可以一键部署填鸭表单系统。 简单操作即可拥有属于自己的表单问卷系统,快速赋能业务。即使小白用户也能轻松上手。 社区版体验地址:https://demo.tduckapp.com/home 前端项目地址: tduck-fro…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
