当前位置: 首页 > news >正文

深度学习R8周:RNN实现阿尔兹海默症(pytorch)

  • 🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

数据集包含2149名患者的广泛健康信息,每名患者的ID范围从4751到6900不等。该数据集包括人口统计详细信息、生活方式因素、病史、临床测量、认知和功能评估、症状以及阿尔兹海默症的诊断。

一、前期准备工作

1.设置硬件设备

import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as sns#设置GPU训练,也可以使用CPU
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

结果输出:

2.导入数据

df = pd.read_csv("alzheimers_disease_data.csv")
# 删除第一列和最后一列
df = df.iloc[:, 1:-1]
print(df)

结果输出:

二、构建数据集

1.标准化

#构建数据集
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitX = df.iloc[:,:-1]
y = df.iloc[:,-1]# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X  = sc.fit_transform(X)

2.划分数据集

#划分数据集
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 0.1,random_state = 1)print(X_train.shape, y_train.shape)

3.构建数据加载器

#构建数据加载器
from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train),batch_size=64,shuffle=False)test_dl  = DataLoader(TensorDataset(X_test, y_test),batch_size=64,shuffle=False)

输出结果:

三、模型训练

1.构建模型

#构建模型
class model_rnn(nn.Module):def __init__(self):super(model_rnn, self).__init__()self.rnn0 = nn.RNN(input_size=32, hidden_size=200,num_layers=1, batch_first=True)self.fc0 = nn.Linear(200, 50)self.fc1 = nn.Linear(50, 2)def forward(self, x):out, hidden1 = self.rnn0(x)out = self.fc0(out)out = self.fc1(out)return outmodel = model_rnn().to(device)
print(model)

结果输出:

如何来看模型的输出数据集格式是什么?

#查看数据集输出格式是什么
print(model(torch.rand(30,32).to(device)).shape)

结果输出:

2.定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3.定义测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4.正式训练模型

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 5e-5   # 学习率
opt        = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs     = 50train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print("="*20, 'Done', "="*20)

输出结果:

四、模型评估

1.Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 200        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

输出结果:

2.混淆矩阵

print("=========输入数据Shape为=========")
print("X_test.shape: ", X_test.shape)
print("y_test.shape: ", y_test.shape)pred = model(X_test.to(device)).argmax(1).cpu().numpy()print("\n======输出数据Shape为 ======")
print("pred.shape: ",pred.shape)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay#计算混淆矩阵
cm = confusion_matrix(y_test, pred)plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d",cmap="Blues")#修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label",fontsize=10)
plt.ylabel("True Label", fontsize=10)#显示图
plt.tight_layout()
plt.show()

3.调用模型进行预测

text_X = X_test[0].reshape(1,-1)   #test[0]为输入数据pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:“,pred")
print("=="*20)
print("0:未患病")
print("1:已患病")

五、优化特征选择版

特征选择的思路值得学习。

数据维度多,一般是先特征提取,降维等操作。

特征提取:①首先想到相关性分析,用热力图,但分析得出与是否患病相关性比较强的只有四个特征,而日常以为的年龄、日常生活得分这些没有看出有相关性。②通过画图分析特征是否与目标有关,但特征纬度多,不是有效的一个方式。③采用随机森林进行分析,效果很好。

六、总结

根据对数据的预处理,帮助实验精度提高。RNN也是很基础的模型,跟着教案,逐渐开始体会实验的思路。看完流程图,也对自己该怎么干,如何干有了大致的方向。

相关文章:

深度学习R8周:RNN实现阿尔兹海默症(pytorch)

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 数据集包含2149名患者的广泛健康信息,每名患者的ID范围从4751到6900不等。该数据集包括人口统计详细信息、生活方式因素、病史、临床测量、认知和功…...

vuex中的state是响应式的吗?

在 Vue.js 中,Vuex 的 state 是响应式的。这意味着当你更改 state 中的数据时,依赖于这些数据的 Vue 组件会自动更新。这是通过 Vue 的响应式系统实现的,该系统使用了 ES6 的 Proxy 对象来监听数据的变化。 当你在 Vuex 中定义了一个 state …...

JavaScript系列05-现代JavaScript新特性

JavaScript作为网络的核心语言之一,近年来发展迅速。从ES6(ECMAScript 2015)开始,JavaScript几乎每年都有新的语言特性加入,极大地改善了开发体验和代码质量。本文主要内容包括: ES6关键特性:解构赋值与扩展运算符&am…...

【量化金融自学笔记】--开篇.基本术语及学习路径建议

在当今这个信息爆炸的时代,金融领域正经历着一场前所未有的变革。传统的金融分析方法逐渐被更加科学、精准的量化技术所取代。量化金融,这个曾经高不可攀的领域,如今正逐渐走进大众的视野。它将数学、统计学、计算机科学与金融学深度融合&…...

3d投影到2d python opencv

目录 cv2.projectPoints 投影 矩阵计算投影 cv2.projectPoints 投影 cv2.projectPoints() 是 OpenCV 中的一个函数,用于将三维空间中的点(3D points)投影到二维图像平面上。这在计算机视觉中经常用于相机标定、物体姿态估计、3D物体与2D图…...

26-小迪安全-模块引用,mvc框架,渲染,数据联动0-rce安全

先创建一个新闻需要的库 这样id值可以逐级递增 然后随便写个值,让他输出一下看看 模板引入 但是这样不够美观,这就涉及到了引入html模板 模板引入是html有一个的地方值可以通过php代码去传入过去,其他的html界面直接调用,这样页…...

【第14节】C++设计模式(行为模式)-Strategy (策略)模式

一、问题的提出 Strategy 模式:算法实现与抽象接口的解耦 Strategy 模式和 Template 模式要解决的问题是相似的,都是为了将业务逻辑(算法)的具体实现与抽象接口解耦。Strategy 模式通过将算法封装到一个类(Context&am…...

播放器系列4——PCM重采样

FFmpeg重采样过程 #mermaid-svg-QydNPsDAlg9lTn6z {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QydNPsDAlg9lTn6z .error-icon{fill:#552222;}#mermaid-svg-QydNPsDAlg9lTn6z .error-text{fill:#552222;stroke:#5…...

网络安全需要学多久才能入门?

网络安全是一个复杂且不断发展的领域,想要入行该领域,我们需要付出足够多的时间和精力好好学习相关知识,才可以获得一份不错的工作,那么网络安全需要学多久才能入门?我们通过这篇文章来了解一下。 学习网络安全的入门时间因个人的…...

通俗版解释:分布式和微服务就像开餐厅

一、分布式系统:把大厨房拆成多个小厨房 想象你开了一家超火爆的餐厅,但原来的厨房太小了: 问题:一个厨师要同时切菜、炒菜、烤面包,手忙脚乱还容易出错。 解决方案: 拆分成多个小厨房(分布式…...

JAVA安全—手搓内存马

前言 最近在学这个内存马,就做一个记录,说实话这个内存马还是有点难度的。 什么是内存马 首先什么是内存马呢,顾名思义就是把木马打进内存中。传统的webshell一旦把文件删除就断开连接了,而Java内存马则不同,它将恶…...

【神经网络】python实现神经网络(一)——数据集获取

一.概述 在文章【机器学习】一个例子带你了解神经网络是什么中,我们大致了解神经网络的正向信息传导、反向传导以及学习过程的大致流程,现在我们正式开始进行代码的实现,首先我们来实现第一步的运算过程模拟讲解:正向传导。本次代…...

历年湖南大学计算机复试上机真题

历年湖南大学计算机复试机试真题 在线评测:https://app2098.acapp.acwing.com.cn/ 杨辉三角形 题目描述 提到杨辉三角形。 大家应该都很熟悉。 这是我国宋朝数学家杨辉在公元 1261 年著书《详解九章算法》提出的。 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 …...

[LeetCode]day33 150.逆波兰式求表达值 + 239.滑动窗口最大值

逆波兰式求表达值 题目链接 题目描述 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算符为 ‘’、‘-’、‘*’ 和 ‘/’ 。 每个操作数(运…...

【银河麒麟高级服务器操作系统实际案例分享】数据库资源重启现象分析及处理全过程

更多银河麒麟操作系统产品及技术讨论,欢迎加入银河麒麟操作系统官方论坛 https://forum.kylinos.cn 了解更多银河麒麟操作系统全新产品,请点击访问 麒麟软件产品专区:https://product.kylinos.cn 开发者专区:https://developer…...

C#中泛型的协变和逆变

协变: 在泛型接口中,使用out关键字可以声明协变。这意味着接口的泛型参数只能作为返回类型出现,而不能作为方法的参数类型。 示例:泛型接口中的协变 假设我们有一个基类Animal和一个派生类Dog: csharp复制 public…...

【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-附录B-严格模式

附录B、严格模式 严格模式 ECMAScript 5 首次引入严格模式的概念。严格模式用于选择以更严格的条件检查 JavaScript 代码错误,可以应用到全局,也可以应用到函数内部。严格模式的好处是可以提早发现错误,因此可以捕获某些 ECMAScript 问题导致…...

跨平台 C++ 程序崩溃调试与 Dump 文件分析

前言 C 程序在运行时可能会由于 空指针访问、数组越界、非法内存访问、栈溢出 等原因崩溃。为了分析崩溃原因,我们通常会生成 Dump 文件(Windows 的 .dmp,Linux 的 core,macOS 的 .crash),然后用调试工具分…...

缺陷VS质量:为何软件缺陷是质量属性的致命对立面?

为何说缺陷是质量的对立面? 核心逻辑:软件质量的定义是“满足用户需求的程度”,而缺陷会直接破坏这种满足关系。 对立性:缺陷的存在意味着软件偏离了预期行为(如功能错误、性能不足、安全性漏洞等)&#…...

伍[5],伺服电机,电流环,速度环,位置环

电流环、速度环和位置环是电机控制系统中常见的三个闭环控制环节,通常采用嵌套结构(内环→外环:电流环→速度环→位置环),各自负责不同层级的控制目标。以下是它们的详细说明及相互关系: 1. 电流环(最内环) 作用:控制电机的电流,间接控制输出转矩(τ=Kt⋅Iτ=Kt​⋅…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...