3d投影到2d python opencv
目录
cv2.projectPoints 投影
矩阵计算投影

cv2.projectPoints 投影
cv2.projectPoints() 是 OpenCV 中的一个函数,用于将三维空间中的点(3D points)投影到二维图像平面上。这在计算机视觉中经常用于相机标定、物体姿态估计、3D物体与2D图像之间的映射等场景。
函数原型:
cv2.projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs)
objectPoints:3D点的集合,通常是物体的真实世界坐标。
rvec:旋转向量,表示物体相对于相机的旋转。
tvec:平移向量,表示物体相对于相机的位置。
cameraMatrix:相机的内参矩阵,通常通过相机标定得到。
distCoeffs:相机的畸变系数,通常是由相机标定得到的。
import cv2
import numpy as np# 定义 3D 点(假设这些点在一个立方体的表面上)
object_points = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)# 定义相机内参矩阵
camera_matrix = np.array([[1000, 0, 320], # fx, 0, cx[0, 1000, 240], # 0, fy, cy[0, 0, 1] # 0, 0, 1
], dtype=np.float32)# 定义畸变系数(假设无畸变)
dist_coeffs = np.zeros((5, 1), dtype=np.float32)# 定义相机外参(旋转向量和平移向量)
rvec = np.array([0, 0, 0], dtype=np.float32) # 无旋转
tvec = np.array([0, 0, -10], dtype=np.float32) # 相机在 Z 轴正方向 5 个单位处# 将 3D 点投影到 2D 图像平面
image_points, _ = cv2.projectPoints(object_points, rvec, tvec, camera_matrix, dist_coeffs)# 创建一个空白图像(用于可视化)
image = np.zeros((480, 640, 3), dtype=np.uint8)image_points=np.squeeze(image_points,axis=1)
print(image_points)
# 在图像上绘制投影点
for point in image_points:x, y = point.ravel()cv2.circle(image, (int(x), int(y)), 3, (0, 255, 0), -1) # 绘制绿色圆点# 显示图像
cv2.imshow("Projected Points", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
矩阵计算投影
内参,外参用的左乘
import numpy as np
import cv2# 定义相机内参矩阵 (3x3)
K = np.array([[1000, 0, 320], # fx, 0, cx[0, 1000, 240], # 0, fy, cy[0, 0, 1]]) # 0, 0, 1# 定义相机外参:旋转矩阵 (3x3) 和平移向量 (3x1)
R = np.eye(3) # 假设相机没有旋转
t = np.array([[0], [0], [-10]]) # 相机在Z轴负方向平移10个单位# 生成随机3D点云 (Nx3)
num_points = 100
# points_3d = np.random.rand(num_points, 3) * 10 # 生成100个3D点,范围在[0, 10)points_3d = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)# 将3D点云从世界坐标系转换到相机坐标系
points_3d_cam = R @ points_3d.T + t # 3xN
points_3d_cam = points_3d_cam.T # 转置为Nx3# 将3D点云投影到2D图像平面
points_2d_homogeneous = K @ points_3d_cam.T # 3xN
points_2d = points_2d_homogeneous[:2, :] / points_2d_homogeneous[2, :] # 归一化
points_2d = points_2d.T # 转置为Nx2# 创建空白图像
image_size = (640, 480) # 图像尺寸
image = np.zeros((image_size[1], image_size[0], 3), dtype=np.uint8)print(points_2d)
# 将2D点绘制到图像上
for point in points_2d:x, y = int(point[0]), int(point[1])if 0 <= x < image_size[0] and 0 <= y < image_size[1]: # 确保点在图像范围内cv2.circle(image, (x, y), 3, (0, 255, 0), -1) # 绘制绿色圆点# 显示图像
cv2.imshow("2D Projection of Point Cloud", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
总结,两种方法的结果是一样的。
相关文章:
3d投影到2d python opencv
目录 cv2.projectPoints 投影 矩阵计算投影 cv2.projectPoints 投影 cv2.projectPoints() 是 OpenCV 中的一个函数,用于将三维空间中的点(3D points)投影到二维图像平面上。这在计算机视觉中经常用于相机标定、物体姿态估计、3D物体与2D图…...
26-小迪安全-模块引用,mvc框架,渲染,数据联动0-rce安全
先创建一个新闻需要的库 这样id值可以逐级递增 然后随便写个值,让他输出一下看看 模板引入 但是这样不够美观,这就涉及到了引入html模板 模板引入是html有一个的地方值可以通过php代码去传入过去,其他的html界面直接调用,这样页…...
【第14节】C++设计模式(行为模式)-Strategy (策略)模式
一、问题的提出 Strategy 模式:算法实现与抽象接口的解耦 Strategy 模式和 Template 模式要解决的问题是相似的,都是为了将业务逻辑(算法)的具体实现与抽象接口解耦。Strategy 模式通过将算法封装到一个类(Context&am…...
播放器系列4——PCM重采样
FFmpeg重采样过程 #mermaid-svg-QydNPsDAlg9lTn6z {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QydNPsDAlg9lTn6z .error-icon{fill:#552222;}#mermaid-svg-QydNPsDAlg9lTn6z .error-text{fill:#552222;stroke:#5…...
网络安全需要学多久才能入门?
网络安全是一个复杂且不断发展的领域,想要入行该领域,我们需要付出足够多的时间和精力好好学习相关知识,才可以获得一份不错的工作,那么网络安全需要学多久才能入门?我们通过这篇文章来了解一下。 学习网络安全的入门时间因个人的…...
通俗版解释:分布式和微服务就像开餐厅
一、分布式系统:把大厨房拆成多个小厨房 想象你开了一家超火爆的餐厅,但原来的厨房太小了: 问题:一个厨师要同时切菜、炒菜、烤面包,手忙脚乱还容易出错。 解决方案: 拆分成多个小厨房(分布式…...
JAVA安全—手搓内存马
前言 最近在学这个内存马,就做一个记录,说实话这个内存马还是有点难度的。 什么是内存马 首先什么是内存马呢,顾名思义就是把木马打进内存中。传统的webshell一旦把文件删除就断开连接了,而Java内存马则不同,它将恶…...
【神经网络】python实现神经网络(一)——数据集获取
一.概述 在文章【机器学习】一个例子带你了解神经网络是什么中,我们大致了解神经网络的正向信息传导、反向传导以及学习过程的大致流程,现在我们正式开始进行代码的实现,首先我们来实现第一步的运算过程模拟讲解:正向传导。本次代…...
历年湖南大学计算机复试上机真题
历年湖南大学计算机复试机试真题 在线评测:https://app2098.acapp.acwing.com.cn/ 杨辉三角形 题目描述 提到杨辉三角形。 大家应该都很熟悉。 这是我国宋朝数学家杨辉在公元 1261 年著书《详解九章算法》提出的。 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 …...
[LeetCode]day33 150.逆波兰式求表达值 + 239.滑动窗口最大值
逆波兰式求表达值 题目链接 题目描述 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算符为 ‘’、‘-’、‘*’ 和 ‘/’ 。 每个操作数(运…...
【银河麒麟高级服务器操作系统实际案例分享】数据库资源重启现象分析及处理全过程
更多银河麒麟操作系统产品及技术讨论,欢迎加入银河麒麟操作系统官方论坛 https://forum.kylinos.cn 了解更多银河麒麟操作系统全新产品,请点击访问 麒麟软件产品专区:https://product.kylinos.cn 开发者专区:https://developer…...
C#中泛型的协变和逆变
协变: 在泛型接口中,使用out关键字可以声明协变。这意味着接口的泛型参数只能作为返回类型出现,而不能作为方法的参数类型。 示例:泛型接口中的协变 假设我们有一个基类Animal和一个派生类Dog: csharp复制 public…...
【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-附录B-严格模式
附录B、严格模式 严格模式 ECMAScript 5 首次引入严格模式的概念。严格模式用于选择以更严格的条件检查 JavaScript 代码错误,可以应用到全局,也可以应用到函数内部。严格模式的好处是可以提早发现错误,因此可以捕获某些 ECMAScript 问题导致…...
跨平台 C++ 程序崩溃调试与 Dump 文件分析
前言 C 程序在运行时可能会由于 空指针访问、数组越界、非法内存访问、栈溢出 等原因崩溃。为了分析崩溃原因,我们通常会生成 Dump 文件(Windows 的 .dmp,Linux 的 core,macOS 的 .crash),然后用调试工具分…...
缺陷VS质量:为何软件缺陷是质量属性的致命对立面?
为何说缺陷是质量的对立面? 核心逻辑:软件质量的定义是“满足用户需求的程度”,而缺陷会直接破坏这种满足关系。 对立性:缺陷的存在意味着软件偏离了预期行为(如功能错误、性能不足、安全性漏洞等)&#…...
伍[5],伺服电机,电流环,速度环,位置环
电流环、速度环和位置环是电机控制系统中常见的三个闭环控制环节,通常采用嵌套结构(内环→外环:电流环→速度环→位置环),各自负责不同层级的控制目标。以下是它们的详细说明及相互关系: 1. 电流环(最内环) 作用:控制电机的电流,间接控制输出转矩(τ=Kt⋅Iτ=Kt⋅…...
RuntimeError: CUDA error: device-side assert triggered
RuntimeError: CUDA error: device-side assert triggered 欢迎来到英杰社区,这里是博主英杰https://bbs.csdn.net/topics/617804998 原因: cuda运行可能是异步的(asynchronously),因此报错信息中提示的位置可能不准确…...
清华大学Deepseek第六版AIGC发展研究3.0(共186页,附PDF下载)
人工智能生成内容(AIGC)正以前所未有的速度改变我们的生活。 2024年底,清华大学新闻与传播学院与人工智能学院联合发布了《AIGC发展研究3.0版》,这份报告系统梳理了AIGC技术的突破性进展、应用场景及社会影响,并展望了…...
SpringBoot生成唯一ID的方式
1.为什么要生成唯一ID? 数据唯一性:每个记录都需要有一个独一无二的标识符来确保数据的唯一性。这可以避免重复的数据行,并有助于准确地查询、更新或删除特定的记录。 数据完整性:通过使用唯一ID,可以保证数据库中的数…...
通俗易懂的分类算法之K近邻详解
通俗易懂的分类算法之K近邻详解 用最通俗的语言和例子,来彻底理解 K近邻(K-Nearest Neighbors,简称 KNN) 这个分类算法。不用担心复杂的数学公式,我会用生活中的例子来解释,保证你一听就懂! 1.…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
智警杯备赛--excel模块
数据透视与图表制作 创建步骤 创建 1.在Excel的插入或者数据标签页下找到数据透视表的按钮 2.将数据放进“请选择单元格区域“中,点击确定 这是最终结果,但是由于环境启不了,这里用的是自己的excel,真实的环境中的excel根据实训…...
