3d投影到2d python opencv
目录
cv2.projectPoints 投影
矩阵计算投影
cv2.projectPoints 投影
cv2.projectPoints() 是 OpenCV 中的一个函数,用于将三维空间中的点(3D points)投影到二维图像平面上。这在计算机视觉中经常用于相机标定、物体姿态估计、3D物体与2D图像之间的映射等场景。
函数原型:
cv2.projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs)
objectPoints:3D点的集合,通常是物体的真实世界坐标。
rvec:旋转向量,表示物体相对于相机的旋转。
tvec:平移向量,表示物体相对于相机的位置。
cameraMatrix:相机的内参矩阵,通常通过相机标定得到。
distCoeffs:相机的畸变系数,通常是由相机标定得到的。
import cv2
import numpy as np# 定义 3D 点(假设这些点在一个立方体的表面上)
object_points = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)# 定义相机内参矩阵
camera_matrix = np.array([[1000, 0, 320], # fx, 0, cx[0, 1000, 240], # 0, fy, cy[0, 0, 1] # 0, 0, 1
], dtype=np.float32)# 定义畸变系数(假设无畸变)
dist_coeffs = np.zeros((5, 1), dtype=np.float32)# 定义相机外参(旋转向量和平移向量)
rvec = np.array([0, 0, 0], dtype=np.float32) # 无旋转
tvec = np.array([0, 0, -10], dtype=np.float32) # 相机在 Z 轴正方向 5 个单位处# 将 3D 点投影到 2D 图像平面
image_points, _ = cv2.projectPoints(object_points, rvec, tvec, camera_matrix, dist_coeffs)# 创建一个空白图像(用于可视化)
image = np.zeros((480, 640, 3), dtype=np.uint8)image_points=np.squeeze(image_points,axis=1)
print(image_points)
# 在图像上绘制投影点
for point in image_points:x, y = point.ravel()cv2.circle(image, (int(x), int(y)), 3, (0, 255, 0), -1) # 绘制绿色圆点# 显示图像
cv2.imshow("Projected Points", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
矩阵计算投影
内参,外参用的左乘
import numpy as np
import cv2# 定义相机内参矩阵 (3x3)
K = np.array([[1000, 0, 320], # fx, 0, cx[0, 1000, 240], # 0, fy, cy[0, 0, 1]]) # 0, 0, 1# 定义相机外参:旋转矩阵 (3x3) 和平移向量 (3x1)
R = np.eye(3) # 假设相机没有旋转
t = np.array([[0], [0], [-10]]) # 相机在Z轴负方向平移10个单位# 生成随机3D点云 (Nx3)
num_points = 100
# points_3d = np.random.rand(num_points, 3) * 10 # 生成100个3D点,范围在[0, 10)points_3d = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)# 将3D点云从世界坐标系转换到相机坐标系
points_3d_cam = R @ points_3d.T + t # 3xN
points_3d_cam = points_3d_cam.T # 转置为Nx3# 将3D点云投影到2D图像平面
points_2d_homogeneous = K @ points_3d_cam.T # 3xN
points_2d = points_2d_homogeneous[:2, :] / points_2d_homogeneous[2, :] # 归一化
points_2d = points_2d.T # 转置为Nx2# 创建空白图像
image_size = (640, 480) # 图像尺寸
image = np.zeros((image_size[1], image_size[0], 3), dtype=np.uint8)print(points_2d)
# 将2D点绘制到图像上
for point in points_2d:x, y = int(point[0]), int(point[1])if 0 <= x < image_size[0] and 0 <= y < image_size[1]: # 确保点在图像范围内cv2.circle(image, (x, y), 3, (0, 255, 0), -1) # 绘制绿色圆点# 显示图像
cv2.imshow("2D Projection of Point Cloud", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
总结,两种方法的结果是一样的。
相关文章:

3d投影到2d python opencv
目录 cv2.projectPoints 投影 矩阵计算投影 cv2.projectPoints 投影 cv2.projectPoints() 是 OpenCV 中的一个函数,用于将三维空间中的点(3D points)投影到二维图像平面上。这在计算机视觉中经常用于相机标定、物体姿态估计、3D物体与2D图…...

26-小迪安全-模块引用,mvc框架,渲染,数据联动0-rce安全
先创建一个新闻需要的库 这样id值可以逐级递增 然后随便写个值,让他输出一下看看 模板引入 但是这样不够美观,这就涉及到了引入html模板 模板引入是html有一个的地方值可以通过php代码去传入过去,其他的html界面直接调用,这样页…...

【第14节】C++设计模式(行为模式)-Strategy (策略)模式
一、问题的提出 Strategy 模式:算法实现与抽象接口的解耦 Strategy 模式和 Template 模式要解决的问题是相似的,都是为了将业务逻辑(算法)的具体实现与抽象接口解耦。Strategy 模式通过将算法封装到一个类(Context&am…...
播放器系列4——PCM重采样
FFmpeg重采样过程 #mermaid-svg-QydNPsDAlg9lTn6z {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QydNPsDAlg9lTn6z .error-icon{fill:#552222;}#mermaid-svg-QydNPsDAlg9lTn6z .error-text{fill:#552222;stroke:#5…...

网络安全需要学多久才能入门?
网络安全是一个复杂且不断发展的领域,想要入行该领域,我们需要付出足够多的时间和精力好好学习相关知识,才可以获得一份不错的工作,那么网络安全需要学多久才能入门?我们通过这篇文章来了解一下。 学习网络安全的入门时间因个人的…...
通俗版解释:分布式和微服务就像开餐厅
一、分布式系统:把大厨房拆成多个小厨房 想象你开了一家超火爆的餐厅,但原来的厨房太小了: 问题:一个厨师要同时切菜、炒菜、烤面包,手忙脚乱还容易出错。 解决方案: 拆分成多个小厨房(分布式…...

JAVA安全—手搓内存马
前言 最近在学这个内存马,就做一个记录,说实话这个内存马还是有点难度的。 什么是内存马 首先什么是内存马呢,顾名思义就是把木马打进内存中。传统的webshell一旦把文件删除就断开连接了,而Java内存马则不同,它将恶…...

【神经网络】python实现神经网络(一)——数据集获取
一.概述 在文章【机器学习】一个例子带你了解神经网络是什么中,我们大致了解神经网络的正向信息传导、反向传导以及学习过程的大致流程,现在我们正式开始进行代码的实现,首先我们来实现第一步的运算过程模拟讲解:正向传导。本次代…...
历年湖南大学计算机复试上机真题
历年湖南大学计算机复试机试真题 在线评测:https://app2098.acapp.acwing.com.cn/ 杨辉三角形 题目描述 提到杨辉三角形。 大家应该都很熟悉。 这是我国宋朝数学家杨辉在公元 1261 年著书《详解九章算法》提出的。 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 …...

[LeetCode]day33 150.逆波兰式求表达值 + 239.滑动窗口最大值
逆波兰式求表达值 题目链接 题目描述 给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。 请你计算该表达式。返回一个表示表达式值的整数。 注意: 有效的算符为 ‘’、‘-’、‘*’ 和 ‘/’ 。 每个操作数(运…...

【银河麒麟高级服务器操作系统实际案例分享】数据库资源重启现象分析及处理全过程
更多银河麒麟操作系统产品及技术讨论,欢迎加入银河麒麟操作系统官方论坛 https://forum.kylinos.cn 了解更多银河麒麟操作系统全新产品,请点击访问 麒麟软件产品专区:https://product.kylinos.cn 开发者专区:https://developer…...
C#中泛型的协变和逆变
协变: 在泛型接口中,使用out关键字可以声明协变。这意味着接口的泛型参数只能作为返回类型出现,而不能作为方法的参数类型。 示例:泛型接口中的协变 假设我们有一个基类Animal和一个派生类Dog: csharp复制 public…...
【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-附录B-严格模式
附录B、严格模式 严格模式 ECMAScript 5 首次引入严格模式的概念。严格模式用于选择以更严格的条件检查 JavaScript 代码错误,可以应用到全局,也可以应用到函数内部。严格模式的好处是可以提早发现错误,因此可以捕获某些 ECMAScript 问题导致…...
跨平台 C++ 程序崩溃调试与 Dump 文件分析
前言 C 程序在运行时可能会由于 空指针访问、数组越界、非法内存访问、栈溢出 等原因崩溃。为了分析崩溃原因,我们通常会生成 Dump 文件(Windows 的 .dmp,Linux 的 core,macOS 的 .crash),然后用调试工具分…...
缺陷VS质量:为何软件缺陷是质量属性的致命对立面?
为何说缺陷是质量的对立面? 核心逻辑:软件质量的定义是“满足用户需求的程度”,而缺陷会直接破坏这种满足关系。 对立性:缺陷的存在意味着软件偏离了预期行为(如功能错误、性能不足、安全性漏洞等)&#…...
伍[5],伺服电机,电流环,速度环,位置环
电流环、速度环和位置环是电机控制系统中常见的三个闭环控制环节,通常采用嵌套结构(内环→外环:电流环→速度环→位置环),各自负责不同层级的控制目标。以下是它们的详细说明及相互关系: 1. 电流环(最内环) 作用:控制电机的电流,间接控制输出转矩(τ=Kt⋅Iτ=Kt⋅…...

RuntimeError: CUDA error: device-side assert triggered
RuntimeError: CUDA error: device-side assert triggered 欢迎来到英杰社区,这里是博主英杰https://bbs.csdn.net/topics/617804998 原因: cuda运行可能是异步的(asynchronously),因此报错信息中提示的位置可能不准确…...
清华大学Deepseek第六版AIGC发展研究3.0(共186页,附PDF下载)
人工智能生成内容(AIGC)正以前所未有的速度改变我们的生活。 2024年底,清华大学新闻与传播学院与人工智能学院联合发布了《AIGC发展研究3.0版》,这份报告系统梳理了AIGC技术的突破性进展、应用场景及社会影响,并展望了…...
SpringBoot生成唯一ID的方式
1.为什么要生成唯一ID? 数据唯一性:每个记录都需要有一个独一无二的标识符来确保数据的唯一性。这可以避免重复的数据行,并有助于准确地查询、更新或删除特定的记录。 数据完整性:通过使用唯一ID,可以保证数据库中的数…...
通俗易懂的分类算法之K近邻详解
通俗易懂的分类算法之K近邻详解 用最通俗的语言和例子,来彻底理解 K近邻(K-Nearest Neighbors,简称 KNN) 这个分类算法。不用担心复杂的数学公式,我会用生活中的例子来解释,保证你一听就懂! 1.…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...