通俗易懂的分类算法之K近邻详解
通俗易懂的分类算法之K近邻详解
用最通俗的语言和例子,来彻底理解 K近邻(K-Nearest Neighbors,简称 KNN) 这个分类算法。不用担心复杂的数学公式,我会用生活中的例子来解释,保证你一听就懂!
1. K近邻是什么?
K近邻是一种非常简单直观的分类算法。它的核心思想是:物以类聚,人以群分。也就是说,一个数据点的类别,取决于它周围最近的 K 个邻居的类别。
举个例子:
- 你想判断一个人是喜欢看电影还是喜欢看书,KNN 会看看他身边的朋友都喜欢什么,然后根据朋友们的喜好来判断他的喜好。
- 它的名字“K近邻”就是因为它的分类依据是“最近的 K 个邻居”。
2. K近邻的核心思想
K近邻的核心思想是:找到离目标点最近的 K 个点,然后根据这 K 个点的类别,投票决定目标点的类别。
- K 值:K 是一个超参数,表示要考虑多少个邻居。
- 比如 K=3,就表示看最近的 3 个邻居。
- 距离:KNN 通常用欧氏距离来计算两个点之间的距离。
- 欧氏距离就是两点之间的直线距离。
3. K近邻的工作步骤
K近邻的分类过程可以分为以下几步:
步骤 1:计算距离
- 对于一个新的数据点,计算它和训练集中每个点的距离。
步骤 2:找到最近的 K 个邻居
- 选择距离最近的 K 个点。
步骤 3:投票决定类别
- 对这 K 个点的类别进行投票,票数最多的类别就是新数据点的类别。
4. 举个例子
假设我们有以下数据:
| 电影评分 | 游戏评分 | 类别 |
|---|---|---|
| 5 | 1 | 喜欢电影 |
| 4 | 2 | 喜欢电影 |
| 1 | 5 | 喜欢游戏 |
| 2 | 4 | 喜欢游戏 |
现在有一个新数据点:电影评分=3,游戏评分=3,我们想判断他是喜欢电影还是喜欢游戏。
步骤 1:计算距离
- 计算新数据点和每个训练数据点的距离(假设用欧氏距离):
- 距离 (5,1):√[(5-3)² + (1-3)²] = √(4 + 4) = √8 ≈ 2.83
- 距离 (4,2):√[(4-3)² + (2-3)²] = √(1 + 1) = √2 ≈ 1.41
- 距离 (1,5):√[(1-3)² + (5-3)²] = √(4 + 4) = √8 ≈ 2.83
- 距离 (2,4):√[(2-3)² + (4-3)²] = √(1 + 1) = √2 ≈ 1.41
步骤 2:找到最近的 K 个邻居
- 假设 K=3,选择距离最近的 3 个点:
- (4,2):距离 1.41,类别=喜欢电影
- (2,4):距离 1.41,类别=喜欢游戏
- (5,1):距离 2.83,类别=喜欢电影
步骤 3:投票决定类别
- 喜欢电影:2 票
- 喜欢游戏:1 票
- 最终结果:喜欢电影
5. 如何选择 K 值?
K 值的选择对 KNN 的结果影响很大:
- K 值太小:容易受到噪声点的影响,导致过拟合。
- K 值太大:可能会忽略数据的局部特征,导致欠拟合。
通常通过交叉验证来选择最优的 K 值。
6. 优点和缺点
优点
- 简单直观,容易实现。
- 不需要训练过程,直接利用数据即可。
- 适合多分类问题。
缺点
- 计算量大,尤其是数据量大的时候。
- 对数据的规模和分布敏感。
- 需要选择合适的 K 值。
7. 应用场景
- 推荐系统(比如根据用户喜好推荐电影)
- 图像分类(比如识别手写数字)
- 医疗诊断(比如判断疾病类型)
- 文本分类(比如判断新闻类别)
希望这个通俗的解释能让你彻底理解 K近邻!如果还有疑问,欢迎随时问我! 😊
相关文章:
通俗易懂的分类算法之K近邻详解
通俗易懂的分类算法之K近邻详解 用最通俗的语言和例子,来彻底理解 K近邻(K-Nearest Neighbors,简称 KNN) 这个分类算法。不用担心复杂的数学公式,我会用生活中的例子来解释,保证你一听就懂! 1.…...
CSDN markdown 操作指令等
CSDN markdown 操作指令等 页内跳转 [内容](#1) <div id"1"> </div>...
【linux】文件与目录命令 - uniq
文章目录 1. 基本用法2. 常用参数3. 用法举例4. 注意事项 uniq 命令用于过滤文本文件中相邻的重复行,并支持统计重复次数或仅保留唯一行。它通常与 sort 命令配合使用,因为 uniq 只识别相邻的重复行。 1. 基本用法 语法: uniq [选项] [输入…...
零信任沙箱:为网络安全筑牢“隔离墙”
在数字化浪潮汹涌澎湃的今天,网络安全如同一艘船在波涛汹涌的大海中航行,面临着重重挑战。数据泄露、恶意软件攻击、网络钓鱼等安全威胁层出不穷,让企业和个人用户防不胜防。而零信任沙箱,就像是一座坚固的“隔离墙”,…...
【金融量化】Ptrade中交易环境支持的业务类型
1. 普通股票买卖 • 特点: 普通股票买卖是最基础的交易形式,投资者通过买入和卖出上市公司的股票来获取收益。 ◦ 流动性高:股票市场交易活跃,买卖方便。 ◦ 收益来源多样:包括股价上涨的资本利得和公司分红。 ◦ 风险…...
【Java---数据结构】链表 LinkedList
1. 链表的概念 链表用于存储一系列元素,由一系列节点组成,每个节点包含两部分:数据域和指针域。 数据域:用于存储数据元素 指针域:用于指向下一个节点的地址,通过指针将各个节点连接在一起,形…...
紧跟 Web3 热潮,RuleOS 如何成为行业新宠?
Web3 热潮正以汹涌之势席卷全球。从金融领域的创新应用到供应链管理的变革,从社交媒体的去中心化尝试到游戏产业的全新玩法探索,Web3 凭借其去中心化、安全性和用户赋权等特性,为各个行业带来了前所未有的机遇。在这股热潮中,Rule…...
CC++的内存管理
目录 1、C/C内存划分 C语言的动态内存管理 malloc calloc realloc free C的动态内存管理 new和delete operator new函数和operator delete函数 new和delete的原理 new T[N]原理 delete[]的原理 1、C/C内存划分 1、栈:存有非静态局部变量、函数参数、返回…...
Spark核心之02:RDD、算子分类、常用算子
spark内存计算框架 一、目标 深入理解RDD弹性分布式数据集底层原理掌握RDD弹性分布式数据集的常用算子操作 二、要点 ⭐️1. RDD是什么 RDD(Resilient Distributed Dataset)叫做**弹性分布式数据集,是Spark中最基本的数据抽象,…...
【Resis实战分析】Redis问题导致页面timeout知识点分析
事故现象:前端页面返回timeout 事故回溯总结一句话: (1)因为大KEY调用量,随着白天自然流量趋势增长而增长,最终在业务高峰最高点期占满带宽使用100%。   (2&#x…...
单一职责原则(设计模式)
目录 问题: 定义: 解决: 方式 1:使用策略模式 示例:用户管理 方式 2:使用装饰者模式 示例:用户操作 方式 3:使用责任链模式 示例:用户操作链 总结 推荐 问题&a…...
生理信号概念
rPPG 信号(远程光电容积脉搏波信号) 原理: 基于光电容积脉搏波描记法,利用普通摄像头,在一定距离外捕捉人体皮肤表面因心脏泵血导致的血液容积变化引起的细微颜色变化,通过图像处理和信号分析算法提取心率…...
安卓内存泄露之DMA-BUF异常增长:Android Studio镜像引起DMA内存泄露
安卓内存泄露之DMA-BUF异常增长:Android Studio镜像引起DMA内存泄露 - Wesley’s Blog 今天用着安卓 14 的板子的时候突然系统卡死。 查看日志发现launcher都被干掉了 03-04 06:13:35.544 7872 8479 I ActivityManager: vis BFGS 18740: com.android.launcher3 (pid 8407) se…...
android13打基础: 控件checkbox
测试checkbox的activity // todo: 高级控件checkbox public class Ch4_CheckBoxActivity extends AppCompatActivityimplements CompoundButton.OnCheckedChangeListener {Overrideprotected void onCreate(Nullable Bundle savedInstanceState) {super.onCreate(savedInstance…...
AI应用测试:遇到类ChatGPT的流式接口要如何压测?
先说结论: 使用最普遍的JMeter 就能支持类 OpenAI 的流式接口(如 ChatGPT 的流式聊天接口)的测试 总体设置 JMeter 支持测试 OpenAI 的流式接口,但需要额外配置(如启用 KeepAlive 和调整超时)。如果需要实时处理流式响应,使用 Regular Expression Extractor 或自定义脚…...
React面试葵花宝典之二
36.Fiber的更新机制 React Fiber 更新机制详解 React Fiber 是 React 16 引入的核心架构重构,旨在解决可中断渲染和优先级调度问题,提升复杂应用的流畅性。其核心思想是将渲染过程拆分为可控制的工作单元,实现更细粒度的任务管理。以下是其…...
在日常生活、工作中deepseek能帮我们解决哪些问题
在日常生活、工作中deepseek能帮我们解决哪些问题 DeepSeek极大降低了普通人使用AI的门槛,让AI快速渗透到人们的工作和生活中,无论是专业场景提效、教育学术赋能、商业创新甚至日常生活,都变得更加轻松。 当然这篇文章也参考了deepseek的回…...
【Java】IO流
Java IO流是Java中处理输入输出的核心机制,通过不同的流类型实现了对数据的高效读写。 一、IO流的分类 1. 按数据方向 输入流(Input Stream):从数据源(如文件、网络等)读取数据。输出流(Outp…...
HTML第三节
一.初识CSS 1.CSS定义 A.内部样式表 B.外部样式表 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title&g…...
Visual Studio 2022安装问题解决,提示无法安装Microsoft.VisualStudio.Community.Msi
表现现象为:安装完后提示无法安装Microsoft.VisualStudio.Community.Msi,无法正常开发C项目 查看日志,大概显示: xxx ReturnCode1316 xxxxx 消息详细信息: 指定的帐户已存在。 试了网上所有的办法都没用,反复尝试&…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
