当前位置: 首页 > news >正文

【流行病学】Melodi-Presto因果关联工具


title: “[流行病学] Melodi Presto因果关联工具”
date: 2022-12-08
lastmod: 2022-12-08
draft: false
tags: [“流行病学”,“因果关联工具”]
toc: true
autoCollapseToc: true

阅读介绍

Melodi-Presto: A fast and agile tool to explore semantic triples derived from biomedical literature1

triples: subject–predicate–object triple

SemMedDB 大型开放式知识库

使用入口

  • 🚩在线工具 Web Application

  • API

  • Jupyter Notebooks

git 下载到json在提取

curl -X POST 'https://melodi-presto.mrcieu.ac.uk/api/overlap/' -H 'accept: application/json' -H 'Content-Type: application/json' -d '{ "x": [ "diabetes " ], "y": [ "coronary heart disease" ]}' > 1.json

使用示例

X: KRAS 
Y: lung cancer

输入的专业术语应该在Mesh先确定???

文章复现

doi: 10.1093/ije/dyab2032

{{< note >}} 1. 部分内容已经改变 2. Object的挑选精确到chronic 3. Predicate的挑选先无限制 4. Subject的挑选去掉了CRP,但是论文有纳入 5. OR的计算已经去掉? 6. gtf基因和[Uniprot蛋白名库](https://www.uniprot.org/uniprotkb?facets=model_organism%3A9606&query=reviewed%3Atrue)删掉 7. +药物库? {{< /note >}}
library(openxlsx)
# read
df <- read.xlsx("chronic kidney disease.xlsx",sheet = 1,  colNames=TRUE,check.names=FALSE )str(df$Pval)
df$Pval <- as.numeric(df$Pval)
# P value < 0.005
df <- subset(df,df$Pval < 0.005 )# removed triples where the subject was a gene or protein
df$Subject <- tolower(df$Subject)
a=stringr::str_which(df$Subject,pattern = "gene|protein|receptor")
# [waring:delete the CRP in the paper]
df$Subject[a]
df <- df[-a,]# where the term “CAUSES” implies causality, 
#   the term “ASSOCIATED_WITH” implies association, 
#   and the term “COEXISTS_WITH” implies co-existence. 
table(df$Predicate)
df <- subset(df,df$Predicate=="CAUSES"|df$Predicate=="ASSOCIATED_WITH"|df$Predicate=="COEXISTS_WITH")# restricted to triples 
# where the object contained either “kidney” or “renal”
table(df$Object)
dplyr::count(df,forcats::fct_lump_n(Object,n=10))
# 
df$Object <- tolower(df$Object)
b=stringr::str_which(df$Object,pattern = "kidney|renal")
df$Object[b]
df <- df[b,]# removed2 
df$Subject
c=stringr::str_which(df$Subject,pattern = "\\|")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "factor")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "peptide")
df$Subject[c]
df <- df[-c,]# retained only unique risk factors (subjects) 
#    to avoid duplicates
df <- dplyr::arrange(df,desc(Count),Pval)
df <- df[!duplicated(df$Subject),]table(df$Count)
# df <- subset(df,df$Count>2)write.xlsx(df, file = "筛选4.xlsx", colNames = TRUE)# enrichment odds ratio
#  (a) count the number of these triples 
#  (b) the number of total triples matched to the query 
#  (c) the total number of these triples in the data base , 
#  (d) and the total number of triples in the database .# stats.fisher_exact([[a, b-a], [c, d-c]])library(openxlsx)
# read
df <- read.xlsx("chronic kidney disease.xlsx",sheet = 1,  colNames=TRUE,check.names=FALSE )str(df$Pval)
df$Pval <- as.numeric(df$Pval)
# P value < 0.005
df <- subset(df,df$Pval < 0.005 )# removed triples where the subject was a gene or protein
df$Subject <- tolower(df$Subject)
a=stringr::str_which(df$Subject,pattern = "gene|protein|receptor")
# [waring:delete the CRP in the paper]
df$Subject[a]
df <- df[-a,]# where the term “CAUSES” implies causality, 
#   the term “ASSOCIATED_WITH” implies association, 
#   and the term “COEXISTS_WITH” implies co-existence. 
table(df$Predicate)
df <- subset(df,df$Predicate=="CAUSES"|df$Predicate=="ASSOCIATED_WITH"|df$Predicate=="COEXISTS_WITH")# restricted to triples 
# where the object contained either “kidney” or “renal”
table(df$Object)
dplyr::count(df,forcats::fct_lump_n(Object,n=10))
# 
df$Object <- tolower(df$Object)
b=stringr::str_which(df$Object,pattern = "kidney|renal")
df$Object[b]
df <- df[b,]# removed2 
df$Subject
c=stringr::str_which(df$Subject,pattern = "\\|")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "factor")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "peptide")
df$Subject[c]
df <- df[-c,]# retained only unique risk factors (subjects) 
#    to avoid duplicates
df <- dplyr::arrange(df,desc(Count),Pval)
df <- df[!duplicated(df$Subject),]table(df$Count)
# df <- subset(df,df$Count>2)write.xlsx(df, file = "筛选4.xlsx", colNames = TRUE)# enrichment odds ratio
#  (a) count the number of these triples 
#  (b) the number of total triples matched to the query 
#  (c) the total number of these triples in the data base , 
#  (d) and the total number of triples in the database .# stats.fisher_exact([[a, b-a], [c, d-c]])

NHANES

注意事项, 参考文章复现


  1. doi: 10.1093/bioinformatics/btaa726 ↩︎

  2. Trans-ethnic Mendelian-randomization
    study reveals causal relationships between
    cardiometabolic factors and chronic kidney
    disease ↩︎

相关文章:

【流行病学】Melodi-Presto因果关联工具

title: “[流行病学] Melodi Presto因果关联工具” date: 2022-12-08 lastmod: 2022-12-08 draft: false tags: [“流行病学”,“因果关联工具”] toc: true autoCollapseToc: true 阅读介绍 Melodi-Presto: A fast and agile tool to explore semantic triples derived from …...

详细分析KeepAlive的基本知识 并缓存路由(附Demo)

目录 前言1. 基本知识2. Demo2.1 基本2.2 拓展2.3 终极 3. 实战 前言 &#x1f91f; 找工作&#xff0c;来万码优才&#xff1a;&#x1f449; #小程序://万码优才/r6rqmzDaXpYkJZF 基本知识推荐阅读&#xff1a;KeepAlive知识点 从实战中学习&#xff0c;源自实战中vue路由的…...

【Go】Go viper 配置模块

1. 配置相关概念 在项目开发过程中&#xff0c;一旦涉及到与第三方中间件打交道就不可避免的需要填写一些配置信息&#xff0c;例如 MySQL 的连接信息、Redis 的连接信息。如果这些配置都采用硬编码的方式无疑是一种不优雅的做法&#xff0c;有以下缺陷&#xff1a; 不同环境…...

zabbix“专家坐诊”第277期问答

在线答疑:乐维社区 问题一 Q&#xff1a;这个怎么解决呢&#xff1f; A&#xff1a;缺少这个依赖。 Q&#xff1a;就一直装不上。 A&#xff1a;装 zabbix-agent2-7.0.0-releasel.el7.x86 64 需要前面提示的那个依赖才可以装。 问题二 Q&#xff1a;大佬&#xff0c;如果agen…...

大模型工程师学习日记(十一):FAISS 高效相似度搜索和密集向量聚类的库

Facebook AI Similarity Search (Faiss /Fez/) 是一个用于高效相似度搜索和密集向量聚类的库。它包含了在任意大小的向量集合中进行搜索的算法&#xff0c;甚至可以处理可能无法完全放入内存的向量集合。它还包含用于评估和参数调整的支持代码。 Faiss 官方文档&#xff1a;We…...

python学习第三天

条件判断 条件判断使用if、elif和else关键字。它们用于根据条件执行不同的代码块。 # 条件判断 age 18 if age < 18:print("你还是个孩子&#xff01;") elif age 18:print("永远十八岁&#xff01;") else:print("你还年轻&#xff01;")…...

深入解析 Svelte:下一代前端框架的革命

深入解析 Svelte&#xff1a;下一代前端框架的革命 1. Svelte 简介 Svelte 是一款前端框架&#xff0c;与 React、Vue 等传统框架不同&#xff0c;它采用 编译时&#xff08;Compile-time&#xff09; 方式来优化前端应用。它不像 React 或 Vue 依赖虚拟 DOM&#xff0c;而是…...

C++20 中位移位运算符的统一行为:深入解析与实践指南

文章目录 1. 位移位运算符的基础1.1 左移运算符&#xff08;<<&#xff09;1.2 右移运算符&#xff08;>>&#xff09; 2. C20 对位移位运算符的统一2.1 移位数量超出操作数位宽2.2 负数移位 3. 实践中的注意事项4. 示例代码5. 总结 在 C 的发展历程中&#xff0c;…...

Linux——基本指令

我们今天学习Linux最基础的指令 ls 指令 语法&#xff1a; ls [选项] [⽬录或⽂件] 功能&#xff1a;对于⽬录&#xff0c;该命令列出该⽬录下的所有⼦⽬录与⽂件。对于⽂件&#xff0c;将列出⽂件名以及其他信 息。 命令中的选项&#xff0c;一次可以传递多个 &#xff0c…...

MySql面试总结(二)

WHERE 子句优化 截至2024年7月,MySQL最新稳定版本是8.2,并不存在MySQL 8.4 。下面从常见的几个方面为你介绍 MySQL 8.x 中 WHERE 子句的优化方法: 1. 确保使用索引 原理:索引可以加快数据的查找速度,当 WHERE 子句中的条件列有索引时,MySQL 可以直接定位到符合条件的数…...

Pytorch中的主要函数

目录 一、torch.manual_seed(seed)二、torch.cuda.manual_seed(seed)三、torch.rand(*size, outNone, dtypeNone, layouttorch.strided, deviceNone, requires_gradFalse)四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧五、torch.version.cuda&#xff1b;torch.bac…...

Java实现大数据量导出报表

一、实现方式 在Java中&#xff0c;导出数据到Excel有多种方式&#xff0c;每种方式都有其优缺点&#xff0c;适用于不同的场景。以下是常见的几种方式及其特点&#xff1a; 1.1 Apache POI Apache POI 是 Java 中最流行的库&#xff0c;支持读写 Excel 文件&#xff08;包括…...

大语言模型 智能助手——既能生成自然语言回复,又能在必要时调用外部工具获取实时数据

示例代码&#xff1a; import json from langgraph.graph import Graph, END,StateGraph from langchain_core.utils.function_calling import convert_to_openai_function from langchain_community.tools.openweathermap import OpenWeatherMapQueryRun from langchain_core…...

PyTorch 系统教程:理解机器学习数据分割

数据分割是机器学习中的一个基本概念&#xff0c;它直接影响模型的性能和泛化。在本文中&#xff0c;我们将深入研究为什么数据分割在机器学习中很重要&#xff0c;并演示如何使用PyTorch有效地实现它。 理解数据分割 数据分割是将数据集划分为单独的组以进行训练、验证和测试…...

分水岭算法(Watershed Algorithm)教程:硬币分割实例

import cv2 import numpy as np# 1. 图像预处理 img cv2.imread("./water/water_coins.jpeg") gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV cv2.THRESH_OTSU) kernel np.ones((3, 3), np.int8)…...

【STM32项目实战系列】基于STM32G474的FDCAN驱动配置

前言&#xff1a;本周工作中用到了CANFD的驱动&#xff0c;由于以前都是用到的CAN2.0&#xff0c;所以过程并不是特别的顺利&#xff0c;所以中间遇到几个比较小的问题导致自己卡住了一段时间&#xff0c;特此记录一下并完全奉上自己的配置的源码。 1&#xff0c;CANFD配置与简…...

shell文本处理

shell文本处理 一、grep ​ 过滤来自一个文件或标准输入匹配模式内容。除了 grep 外&#xff0c;还有 egrep、fgrep。egrep 是 grep 的扩展&#xff0c;相当于 grep -E。fgrep 相当于 grep -f&#xff0c;用的比较少。 用法 grep [OPTION]... PATTERN [FILE]...支持的正则描述…...

如何利用客户端双向TLS认证保护云上应用安全

双向TLS(mTLS)通过要求服务器和客户端双方使用数字证书来验证彼此身份&#xff0c;从而扩展了传统TLS的安全性。常规的TLS只会验证服务器的身份(如大家的浏览器在验证网站时的场景)&#xff0c;而mTLS确保在任何数据交换发生之前&#xff0c;双方都对彼此持有信任。在本文中&am…...

nlp第十节——LLM相关

一、模型蒸馏技术 本质上是从一个大模型蒸馏出小模型&#xff0c;从小模型训练出来的概率分布&#xff08;如自回归模型预测下一个字的概率分布&#xff09;分别与大模型预测的概率分布和ground label求loss。与大模型预测的概率分布用KL散度求loss&#xff0c;与ground label用…...

T-SQL 语言基础: SQL 数据库对象元数据及配置信息获取

目录 介绍目录视图 获取表和架构名称获取列信息 信息架构视图 获取表信息获取列信息 系统存储过程和函数 获取对象列表获取对象详细信息获取约束信息获取数据库属性信息 总结引用 介绍 在 SQL 数据库管理中&#xff0c;获取数据库对象的元数据信息是至关重要的。元数据提供了…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...