Pytorch中的主要函数
目录
- 一、torch.manual_seed(seed)
- 二、torch.cuda.manual_seed(seed)
- 三、torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
- 四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧
- 五、torch.version.cuda;torch.backends.cudnn.version();打印cuda、cudnn版本
- 六、torch.autograd.grad()自动求梯度
我就基本的解释一下吧,!
一、torch.manual_seed(seed)
功能: 用于手动设置 PyTorch 的随机数生成器的种子。当你设置了一个特定的种子后,后续所有依赖随机数生成的操作都会产生可重复的结果。
参数: seed 是一个整数,取值范围通常是 32 位整数范围(-2147483648 到 2147483647)。
示例代码如下:
import torch# 设置随机种子
torch.manual_seed(42)
# 生成随机张量
tensor1 = torch.randn(2, 2)
print(tensor1)# 再次设置相同的种子
torch.manual_seed(42)
tensor2 = torch.randn(2, 2)
print(tensor2)# 验证两次生成的张量是否相同
print(torch.allclose(tensor1, tensor2)) # 输出 True
运行结果如下图:
(一般还有个torch.seed()但是被弃用了,因为每次都是随机的结果,在科研啥的,一般都手动指定随机数种子,)
先解释一下,什么是随机数种子:
PyTorch 中随机数种子的作用原理
随机数种子就像是随机数生成器的起始状态标识。在 PyTorch 里,随机数生成器是基于特定的算法(如 Mersenne Twister 算法)来工作的。当你设置一个随机数种子时,实际上是将随机数生成器初始化为一个特定的状态。
从这个特定状态开始,随机数生成器会按照
固定的算法规则
生成一系列随机数。只要种子不变,每次从这个状态开始生成的随机数序列都是相同的。这就保证了在相同的代码和相同的种子设置下,每次运行代码时,所有依赖随机数生成的操作(如初始化模型权重、打乱数据集等)都会产生相同的结果,从而实现实验的可重复性。
例如,在神经网络训练中,我们通常会随机初始化模型的权重。如果不设置随机数种子,每次运行代码时权重的初始化值都不同,那么模型的训练结果也会有差异,不利于实验结果的对比和分析。而通过设置固定的随机数种子,我们可以确保每次运行代码时模型的初始权重是相同的,这样就可以更准确地评估不同训练参数或方法对模型性能的影响。
二、torch.cuda.manual_seed(seed)
功能: 专门为 CUDA 设备(即 GPU)设置随机数种子。如果你的代码在 GPU 上运行,使用这个函数可以确保在 GPU 上的随机操作具有可重复性。
参数: seed 同样是一个整数。
import torchif torch.cuda.is_available():# 为 CUDA 设备设置随机种子torch.cuda.manual_seed(42)# 在 GPU 上生成随机张量device = torch.device("cuda")tensor = torch.randn(2, 2).to(device)print(tensor)
注意:没有CUDA的就别跑了,会报错的。
三、torch.rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)
功能: 生成指定形状的服从均匀分布的随机数张量,取值范围是 [0, 1)。
参数:
*size: 张量的形状,例如 (2, 3) 表示生成一个 2 行 3 列的张量。
out: 可选参数,用于指定输出张量。
dtype: 张量的数据类型。
layout: 张量的布局,一般使用默认的 torch.strided。
device: 张量存储的设备,如 ‘cpu’ 或 ‘cuda’。
requires_grad: 是否需要计算梯度。
import torch# 生成一个 2 行 3 列的随机张量
random_tensor = torch.rand(2, 3)
print(random_tensor)
示例结果:
四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧
import torch# 判断 CUDA 是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
五、torch.version.cuda;torch.backends.cudnn.version();打印cuda、cudnn版本
import torch# 判断 CUDA 是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(f"Using device: {device}")print(torch.cuda.is_available()) #查看是否有cuda
print(torch.backends.cudnn.is_available()) #查看是否有cudnn
print(torch.version.cuda) #打印cuda的版本
print(torch.backends.cudnn.version()) #打印cudnn的版本
我的运行结果如下:
大家如果有安装环境有问题的也可以私信我哦~
六、torch.autograd.grad()自动求梯度
torch.autograd.grad()用于求取梯度;
函数原型:
torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False)
outputs:
类型:Tensor 或 Tensor 列表
描述:目标张量,即需要计算梯度的张量。
inputs:
类型:Tensor 或 Tensor 列表
描述:输入张量,用于计算梯度的张量。
grad_outputs(可选):
类型:Tensor 或 Tensor 列表
描述:目标张量对应的梯度。如果outputs 是一个标量,则 grad_outputs 不需要指定;如果 outputs 是一个张量或张量列表,需要指定 grad_outputs 的形状与之对应。
retain_graph(可选,默认值:None):
类型:布尔值
描述:是否保留计算图。在默认情况下,计算图在反向传播后会被释放以节省内存。如果需要多次反向传播同一个计算图,可以设置为 True。
create_graph(可选,默认值:False):
类型:布尔值
描述:是否创建新的计算图。如果设置为 True,梯度计算将被跟踪,生成的梯度张量将保留计算图,从而允许进行高阶导数的计算。
only_inputs(可选,默认值:True):
类型:布尔值
描述:是否只计算输入张量的梯度。如果设置为 True,仅输入张量的梯度会被计算。
allow_unused(可选,默认值:False):
类型:布尔值
描述:是否允许输入张量未被使用。如果某些输入张量未被 outputs 使用,并且没有被计算梯度,则会抛出错误。如果设置为 True,这些未使用的输入张量的梯度将返回为 None。
返回值
类型:Tensor 或 Tensor 列表
返回对应输入张量的梯度。
outputs:是你希望对其进行求导的标量
import torch# 创建两个张量,requires_grad=True 表示需要计算梯度
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
y = torch.tensor([4.0, 5.0, 6.0], requires_grad=True)# 定义一个函数 z = x * y
z = x * y# 使用 torch.autograd.grad() 计算梯度
grad_z_x = torch.autograd.grad(outputs=z, inputs=x, grad_outputs=torch.ones_like(z))print("梯度 dz/dx:", grad_z_x)
后面如果还有什么用到的,我会在这继续更新…ing!
相关文章:

Pytorch中的主要函数
目录 一、torch.manual_seed(seed)二、torch.cuda.manual_seed(seed)三、torch.rand(*size, outNone, dtypeNone, layouttorch.strided, deviceNone, requires_gradFalse)四、给大家写一个常用的自动选择电脑cuda 或者cpu 的小技巧五、torch.version.cuda;torch.bac…...
Java实现大数据量导出报表
一、实现方式 在Java中,导出数据到Excel有多种方式,每种方式都有其优缺点,适用于不同的场景。以下是常见的几种方式及其特点: 1.1 Apache POI Apache POI 是 Java 中最流行的库,支持读写 Excel 文件(包括…...
大语言模型 智能助手——既能生成自然语言回复,又能在必要时调用外部工具获取实时数据
示例代码: import json from langgraph.graph import Graph, END,StateGraph from langchain_core.utils.function_calling import convert_to_openai_function from langchain_community.tools.openweathermap import OpenWeatherMapQueryRun from langchain_core…...

PyTorch 系统教程:理解机器学习数据分割
数据分割是机器学习中的一个基本概念,它直接影响模型的性能和泛化。在本文中,我们将深入研究为什么数据分割在机器学习中很重要,并演示如何使用PyTorch有效地实现它。 理解数据分割 数据分割是将数据集划分为单独的组以进行训练、验证和测试…...
分水岭算法(Watershed Algorithm)教程:硬币分割实例
import cv2 import numpy as np# 1. 图像预处理 img cv2.imread("./water/water_coins.jpeg") gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV cv2.THRESH_OTSU) kernel np.ones((3, 3), np.int8)…...

【STM32项目实战系列】基于STM32G474的FDCAN驱动配置
前言:本周工作中用到了CANFD的驱动,由于以前都是用到的CAN2.0,所以过程并不是特别的顺利,所以中间遇到几个比较小的问题导致自己卡住了一段时间,特此记录一下并完全奉上自己的配置的源码。 1,CANFD配置与简…...

shell文本处理
shell文本处理 一、grep 过滤来自一个文件或标准输入匹配模式内容。除了 grep 外,还有 egrep、fgrep。egrep 是 grep 的扩展,相当于 grep -E。fgrep 相当于 grep -f,用的比较少。 用法 grep [OPTION]... PATTERN [FILE]...支持的正则描述…...

如何利用客户端双向TLS认证保护云上应用安全
双向TLS(mTLS)通过要求服务器和客户端双方使用数字证书来验证彼此身份,从而扩展了传统TLS的安全性。常规的TLS只会验证服务器的身份(如大家的浏览器在验证网站时的场景),而mTLS确保在任何数据交换发生之前,双方都对彼此持有信任。在本文中&am…...

nlp第十节——LLM相关
一、模型蒸馏技术 本质上是从一个大模型蒸馏出小模型,从小模型训练出来的概率分布(如自回归模型预测下一个字的概率分布)分别与大模型预测的概率分布和ground label求loss。与大模型预测的概率分布用KL散度求loss,与ground label用…...
T-SQL 语言基础: SQL 数据库对象元数据及配置信息获取
目录 介绍目录视图 获取表和架构名称获取列信息 信息架构视图 获取表信息获取列信息 系统存储过程和函数 获取对象列表获取对象详细信息获取约束信息获取数据库属性信息 总结引用 介绍 在 SQL 数据库管理中,获取数据库对象的元数据信息是至关重要的。元数据提供了…...

ue5 创建多列StreeView的方法与理解
创建StreeView的多列样式怎么就像是创建单行单列差不多?貌似就是在单行单列中加入了多列widget? 示例代码 DetailTabWidget #pragma once #include "TreeViewItemBase.h"class SDetailTabWidget : public SCompoundWidget {SLATE_BEGIN_ARGS(SDetailT…...

C# OnnxRuntime部署DAMO-YOLO香烟检测
目录 说明 效果 模型信息 项目 代码 下载 参考 说明 效果 模型信息 Model Properties ------------------------- --------------------------------------------------------------- Inputs ------------------------- name:input tensor:Floa…...

陕西省地标-DB61/T 1121-2018 政务服务中心建设和运营规范
揭秘陕西省智慧政务服务中心新标准:打造高效便捷的服务新体验 随着信息化时代的深入发展,智慧政务已成为提升政府服务效率、优化营商环境的重要举措。陕西省作为全国政务改革的先行者,近期颁布了《陕西省地标-DB61_T 1121-2018 政务服务中心…...

UDP协议(20250303)
1. UDP UDP:用户数据报协议(User Datagram Protocol),传输层协议之一(UDP,TCP) 2. 特性 发送数据时不需要建立链接,节省资源开销不安全不可靠的协议 //一般用在实时性比较高…...

【四.RAG技术与应用】【12.阿里云百炼应用(下):RAG的云端优化与扩展】
在上一篇文章中,我们聊了如何通过阿里云百炼平台快速搭建一个RAG(检索增强生成)应用,实现文档智能问答、知识库管理等基础能力。今天咱们继续深入,聚焦两个核心问题:如何通过云端技术优化RAG的效果,以及如何扩展RAG的应用边界。文章会穿插实战案例,手把手带你踩坑避雷。…...
Docker新手入门(持续更新中)
一、定义 快速构建、运行、管理应用的工具。 Docker可以帮助我们下载应用镜像,创建并运行镜像的容器,从而快速部署应用。 所谓镜像,就是将应用所需的函数库、依赖、配置等应用一起打包得到的。 所谓容器,为每个镜像的应用进程创建…...

【星云 Orbit • STM32F4】08. 用判断数据头来接收据的串口通用程序框架
【星云 Orbit • STM32F4】08. 用判断数据头来接收据的串口通用程序框架 1. 引言 本教程旨在帮助嵌入式开发小白从零开始,学习如何在STM32F407微控制器上实现一个基于串口的数据接收程序。该程序能够通过判断数据头来接收一串数据,并将其存储到缓冲区中…...
HSPF 水文模型建模方法与案例分析实践技术应用
在水文模拟领域,HSPF 模型(Hydrological Simulation Program Fortran)与 SWAT 模型一样,都是备受瞩目的水文模型软件。HSPF 模型因其强大的功能和简便的操作,在全球范围内得到了广泛应用。该模型不仅能够在缺乏测量数据…...

设置 CursorRules 规则
为什么要设置CursorRules? 设置 CursorRules 可以帮助优化代码生成和开发流程,提升工作效率。具体的好处包括: 1、自动化代码生成 :通过定义规则,Cursor 可以根据你的开发需求自动生成符合规定的代码模板,…...

人工智能AI在汽车设计领域的应用探索
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...

云原生安全实战:API网关Envoy的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口,负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...