C# OnnxRuntime部署DAMO-YOLO香烟检测
目录
说明
效果
模型信息
项目
代码
下载
参考
说明

效果

模型信息
Model Properties
-------------------------
---------------------------------------------------------------
Inputs
-------------------------
name:input
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:transposed_output
tensor:Float[1, 5, 8400]
---------------------------------------------------------------
项目

代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;
namespace Onnx_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string model_path;
string classer_path;
public string[] class_names;
public int class_num;
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
int input_height;
int input_width;
InferenceSession onnx_session;
int box_num;
float conf_threshold;
float nms_threshold;
StringBuilder sb = new StringBuilder();
/// <summary>
/// 选择图片
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
pictureBox2.Image = null;
}
/// <summary>
/// 推理
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";
sb.Clear();
Application.DoEvents();
Mat image = new Mat(image_path);
float ratio = Math.Min(input_height * 1.0f / image.Rows, input_width * 1.0f / image.Cols);
int neww = (int)(image.Cols * ratio);
int newh = (int)(image.Rows * ratio);
Mat dstimg = new Mat();
Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);
Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(neww, newh));
Cv2.CopyMakeBorder(dstimg, dstimg, 0, input_height - newh, 0, input_width - neww, BorderTypes.Constant, new Scalar(1));
//Cv2.ImShow("input_img", dstimg);
//输入Tensor
Tensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
for (int y = 0; y < dstimg.Height; y++)
{
for (int x = 0; x < dstimg.Width; x++)
{
input_tensor[0, 0, y, x] = dstimg.At<Vec3b>(y, x)[0];
input_tensor[0, 1, y, x] = dstimg.At<Vec3b>(y, x)[1];
input_tensor[0, 2, y, x] = dstimg.At<Vec3b>(y, x)[2];
}
}
dstimg.Dispose();
List<NamedOnnxValue> input_container = new List<NamedOnnxValue>
{
NamedOnnxValue.CreateFromTensor("input", input_tensor)
};
//推理
dt1 = DateTime.Now;
var ort_outputs = onnx_session.Run(input_container).ToArray();
dt2 = DateTime.Now;
float[] data = Transpose(ort_outputs[0].AsTensor<float>().ToArray(), 4 + class_num, box_num);
float[] confidenceInfo = new float[class_num];
float[] rectData = new float[4];
List<DetectionResult> detResults = new List<DetectionResult>();
for (int i = 0; i < box_num; i++)
{
Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);
float score = confidenceInfo.Max(); // 获取最大值
int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置
int xmin = (int)(rectData[0] / ratio);
int ymin = (int)(rectData[1] / ratio);
int xmax = (int)(rectData[2] / ratio);
int ymax = (int)(rectData[3] / ratio);
Rect box = new Rect();
box.X = (int)xmin;
box.Y = (int)ymin;
box.Width = (int)(xmax - xmin);
box.Height = (int)(ymax - ymin);
detResults.Add(new DetectionResult(
maxIndex,
class_names[maxIndex],
box,
score));
}
//NMS
CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
sb.AppendLine("------------------------------");
//绘制结果
Mat result_image = image.Clone();
foreach (DetectionResult r in detResults)
{
Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
, r.Class
, r.Confidence.ToString("P0")
, r.Rect.TopLeft.X
, r.Rect.TopLeft.Y
, r.Rect.BottomRight.X
, r.Rect.BottomRight.Y
));
}
if (pictureBox2.Image != null)
{
pictureBox2.Image.Dispose();
}
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
result_image.Dispose();
textBox1.Text = sb.ToString();
button2.Enabled = true;
}
/// <summary>
///窗体加载
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void Form1_Load(object sender, EventArgs e)
{
model_path = "model/damoyolo_cigarette.onnx";
//创建输出会话,用于输出模型读取信息
SessionOptions options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
input_height = 640;
input_width = 640;
box_num = 8400;
conf_threshold = 0.25f;
nms_threshold = 0.5f;
classer_path = "model/lable.txt";
class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
class_num = class_names.Length;
image_path = "test_img/2.jpg";
pictureBox1.Image = new Bitmap(image_path);
}
/// <summary>
/// 保存
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private void button3_Click(object sender, EventArgs e)
{
if (pictureBox2.Image == null)
{
return;
}
Bitmap output = new Bitmap(pictureBox2.Image);
SaveFileDialog sdf = new SaveFileDialog();
sdf.Title = "保存";
sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
if (sdf.ShowDialog() == DialogResult.OK)
{
switch (sdf.FilterIndex)
{
case 1:
{
output.Save(sdf.FileName, ImageFormat.Jpeg);
break;
}
case 2:
{
output.Save(sdf.FileName, ImageFormat.Png);
break;
}
case 3:
{
output.Save(sdf.FileName, ImageFormat.Bmp);
break;
}
case 4:
{
output.Save(sdf.FileName, ImageFormat.Emf);
break;
}
case 5:
{
output.Save(sdf.FileName, ImageFormat.Exif);
break;
}
case 6:
{
output.Save(sdf.FileName, ImageFormat.Gif);
break;
}
case 7:
{
output.Save(sdf.FileName, ImageFormat.Icon);
break;
}
case 8:
{
output.Save(sdf.FileName, ImageFormat.Tiff);
break;
}
case 9:
{
output.Save(sdf.FileName, ImageFormat.Wmf);
break;
}
}
MessageBox.Show("保存成功,位置:" + sdf.FileName);
}
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
ShowNormalImg(pictureBox1.Image);
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
ShowNormalImg(pictureBox2.Image);
}
public void ShowNormalImg(Image img)
{
if (img == null) return;
frmShow frm = new frmShow();
frm.Width = Screen.PrimaryScreen.Bounds.Width;
frm.Height = Screen.PrimaryScreen.Bounds.Height;
if (frm.Width > img.Width)
{
frm.Width = img.Width;
}
if (frm.Height > img.Height)
{
frm.Height = img.Height;
}
bool b = frm.richTextBox1.ReadOnly;
Clipboard.SetDataObject(img, true);
frm.richTextBox1.ReadOnly = false;
frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap));
frm.richTextBox1.ReadOnly = b;
frm.ShowDialog();
}
public unsafe float[] Transpose(float[] tensorData, int rows, int cols)
{
float[] transposedTensorData = new float[tensorData.Length];
fixed (float* pTensorData = tensorData)
{
fixed (float* pTransposedData = transposedTensorData)
{
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
int index = i * cols + j;
int transposedIndex = j * rows + i;
pTransposedData[transposedIndex] = pTensorData[index];
}
}
}
}
return transposedTensorData;
}
}
public class DetectionResult
{
public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence)
{
this.ClassId = ClassId;
this.Confidence = Confidence;
this.Rect = Rect;
this.Class = Class;
}
public string Class { get; set; }
public int ClassId { get; set; }
public float Confidence { get; set; }
public Rect Rect { get; set; }
}
}
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string model_path;string classer_path;public string[] class_names;public int class_num;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;int input_height;int input_width;InferenceSession onnx_session;int box_num;float conf_threshold;float nms_threshold;StringBuilder sb = new StringBuilder();/// <summary>/// 选择图片/// </summary>/// <param name="sender"></param>/// <param name="e"></param>private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";pictureBox2.Image = null;}/// <summary>/// 推理/// </summary>/// <param name="sender"></param>/// <param name="e"></param>private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "";sb.Clear();Application.DoEvents();Mat image = new Mat(image_path);float ratio = Math.Min(input_height * 1.0f / image.Rows, input_width * 1.0f / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Mat dstimg = new Mat();Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, input_height - newh, 0, input_width - neww, BorderTypes.Constant, new Scalar(1));//Cv2.ImShow("input_img", dstimg);//输入TensorTensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });for (int y = 0; y < dstimg.Height; y++){for (int x = 0; x < dstimg.Width; x++){input_tensor[0, 0, y, x] = dstimg.At<Vec3b>(y, x)[0];input_tensor[0, 1, y, x] = dstimg.At<Vec3b>(y, x)[1];input_tensor[0, 2, y, x] = dstimg.At<Vec3b>(y, x)[2];}}dstimg.Dispose();List<NamedOnnxValue> input_container = new List<NamedOnnxValue>{NamedOnnxValue.CreateFromTensor("input", input_tensor)};//推理dt1 = DateTime.Now;var ort_outputs = onnx_session.Run(input_container).ToArray();dt2 = DateTime.Now;float[] data = Transpose(ort_outputs[0].AsTensor<float>().ToArray(), 4 + class_num, box_num);float[] confidenceInfo = new float[class_num];float[] rectData = new float[4];List<DetectionResult> detResults = new List<DetectionResult>();for (int i = 0; i < box_num; i++){Array.Copy(data, i * (class_num + 4), rectData, 0, 4);Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);float score = confidenceInfo.Max(); // 获取最大值int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置int xmin = (int)(rectData[0] / ratio);int ymin = (int)(rectData[1] / ratio);int xmax = (int)(rectData[2] / ratio);int ymax = (int)(rectData[3] / ratio);Rect box = new Rect();box.X = (int)xmin;box.Y = (int)ymin;box.Width = (int)(xmax - xmin);box.Height = (int)(ymax - ymin);detResults.Add(new DetectionResult(maxIndex,class_names[maxIndex],box,score));}//NMSCvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");//绘制结果Mat result_image = image.Clone();foreach (DetectionResult r in detResults){Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", r.Class, r.Confidence.ToString("P0"), r.Rect.TopLeft.X, r.Rect.TopLeft.Y, r.Rect.BottomRight.X, r.Rect.BottomRight.Y));}if (pictureBox2.Image != null){pictureBox2.Image.Dispose();}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());result_image.Dispose();textBox1.Text = sb.ToString();button2.Enabled = true;}/// <summary>///窗体加载/// </summary>/// <param name="sender"></param>/// <param name="e"></param>private void Form1_Load(object sender, EventArgs e){model_path = "model/damoyolo_cigarette.onnx";//创建输出会话,用于输出模型读取信息SessionOptions options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径input_height = 640;input_width = 640;box_num = 8400;conf_threshold = 0.25f;nms_threshold = 0.5f;classer_path = "model/lable.txt";class_names = File.ReadAllLines(classer_path, Encoding.UTF8);class_num = class_names.Length;image_path = "test_img/2.jpg";pictureBox1.Image = new Bitmap(image_path);}/// <summary>/// 保存/// </summary>/// <param name="sender"></param>/// <param name="e"></param>private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);SaveFileDialog sdf = new SaveFileDialog();sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}private void pictureBox1_DoubleClick(object sender, EventArgs e){ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){ShowNormalImg(pictureBox2.Image);}public void ShowNormalImg(Image img){if (img == null) return;frmShow frm = new frmShow();frm.Width = Screen.PrimaryScreen.Bounds.Width;frm.Height = Screen.PrimaryScreen.Bounds.Height;if (frm.Width > img.Width){frm.Width = img.Width;}if (frm.Height > img.Height){frm.Height = img.Height;}bool b = frm.richTextBox1.ReadOnly;Clipboard.SetDataObject(img, true);frm.richTextBox1.ReadOnly = false;frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap));frm.richTextBox1.ReadOnly = b;frm.ShowDialog();}public unsafe float[] Transpose(float[] tensorData, int rows, int cols){float[] transposedTensorData = new float[tensorData.Length];fixed (float* pTensorData = tensorData){fixed (float* pTransposedData = transposedTensorData){for (int i = 0; i < rows; i++){for (int j = 0; j < cols; j++){int index = i * cols + j;int transposedIndex = j * rows + i;pTransposedData[transposedIndex] = pTensorData[index];}}}}return transposedTensorData;}}public class DetectionResult{public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence){this.ClassId = ClassId;this.Confidence = Confidence;this.Rect = Rect;this.Class = Class;}public string Class { get; set; }public int ClassId { get; set; }public float Confidence { get; set; }public Rect Rect { get; set; }}}
下载
源码下载
参考
https://modelscope.cn/models/iic/cv_tinynas_object-detection_damoyolo_cigarette/summary
相关文章:
C# OnnxRuntime部署DAMO-YOLO香烟检测
目录 说明 效果 模型信息 项目 代码 下载 参考 说明 效果 模型信息 Model Properties ------------------------- --------------------------------------------------------------- Inputs ------------------------- name:input tensor:Floa…...
陕西省地标-DB61/T 1121-2018 政务服务中心建设和运营规范
揭秘陕西省智慧政务服务中心新标准:打造高效便捷的服务新体验 随着信息化时代的深入发展,智慧政务已成为提升政府服务效率、优化营商环境的重要举措。陕西省作为全国政务改革的先行者,近期颁布了《陕西省地标-DB61_T 1121-2018 政务服务中心…...
UDP协议(20250303)
1. UDP UDP:用户数据报协议(User Datagram Protocol),传输层协议之一(UDP,TCP) 2. 特性 发送数据时不需要建立链接,节省资源开销不安全不可靠的协议 //一般用在实时性比较高…...
【四.RAG技术与应用】【12.阿里云百炼应用(下):RAG的云端优化与扩展】
在上一篇文章中,我们聊了如何通过阿里云百炼平台快速搭建一个RAG(检索增强生成)应用,实现文档智能问答、知识库管理等基础能力。今天咱们继续深入,聚焦两个核心问题:如何通过云端技术优化RAG的效果,以及如何扩展RAG的应用边界。文章会穿插实战案例,手把手带你踩坑避雷。…...
Docker新手入门(持续更新中)
一、定义 快速构建、运行、管理应用的工具。 Docker可以帮助我们下载应用镜像,创建并运行镜像的容器,从而快速部署应用。 所谓镜像,就是将应用所需的函数库、依赖、配置等应用一起打包得到的。 所谓容器,为每个镜像的应用进程创建…...
【星云 Orbit • STM32F4】08. 用判断数据头来接收据的串口通用程序框架
【星云 Orbit • STM32F4】08. 用判断数据头来接收据的串口通用程序框架 1. 引言 本教程旨在帮助嵌入式开发小白从零开始,学习如何在STM32F407微控制器上实现一个基于串口的数据接收程序。该程序能够通过判断数据头来接收一串数据,并将其存储到缓冲区中…...
HSPF 水文模型建模方法与案例分析实践技术应用
在水文模拟领域,HSPF 模型(Hydrological Simulation Program Fortran)与 SWAT 模型一样,都是备受瞩目的水文模型软件。HSPF 模型因其强大的功能和简便的操作,在全球范围内得到了广泛应用。该模型不仅能够在缺乏测量数据…...
设置 CursorRules 规则
为什么要设置CursorRules? 设置 CursorRules 可以帮助优化代码生成和开发流程,提升工作效率。具体的好处包括: 1、自动化代码生成 :通过定义规则,Cursor 可以根据你的开发需求自动生成符合规定的代码模板,…...
人工智能AI在汽车设计领域的应用探索
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活…...
《当AI生成内容遭遇审核:需求与困境的深度剖析》:此文为AI自动生成
AI 内容审核:数字时代的守门人 在当今数字技术迅猛发展的浪潮中,AI 在内容生成领域取得了令人瞩目的成就,成为了推动创新与变革的核心力量。以 AI 绘画为例,从早期简单粗糙的图像生成,到如今能够创作出细节丰富、风格多…...
【无人机与无人车协同避障】
无人机与无人车协同避障的关键在于点云数据的采集、传输、解析及实时应用,以下是技术实现的分步解析: 1. 点云数据采集(无人机端) 传感器选择: LiDAR:通过激光雷达获取高精度3D点云(精度达厘米…...
ComfyUI AnimeDiff动画参数总结
ComfyUI AnimeDiff动画参数总结 一、动画生成核心参数 参数名称建议值/范围作用说明备注步数(Steps)15-25控制AI计算迭代次数,越高细节越精细,但耗时更长推荐20步,显存不足可降至15步CFG值7.0-8.5提示词对画面的控制…...
No manual entry for printf in section 3
问题描述 在尝试查看 printf 的 C 函数手册页(即 man 3 printf)时遇到了 “No manual entry for printf in section 3” 的错误信息。 解决方案 出现这问题,是由于系统上没有安装对应的部分的手册页,因此安装对应的部分的手册…...
React 之 Redux 第二十八节 学习目标与规划大纲及概要讲述
接下来 开始Redux 全面详细的文档输出,主要基于一下几个方面,欢迎大家补充指正 一、Redux 基础概念 为什么需要 Redux? 前端状态管理的挑战(组件间通信、状态共享) Redux 解决的问题:集中式、可预测的状态…...
OSPF路由ISIS路由与路由学习对比(OSPF vs ISIS Routing Learning Comparison)
OSPF路由ISIS路由与路由学习对比 1.OSPF 路由学习规律 OSPF使用链路状态数据库(Link State Database)来存储网络拓扑信息。每个OSPF路由器通过交换链路状态更新(Link State Updates)来了解整个网络的拓扑,并根据收到…...
PMP项目管理—资源管理篇—1.规划资源管理
文章目录 基本信息4W1HITTO输入工具与技术输出 三种组织结构图和职位描述组织分解结构 OBS职责分派矩阵 RAMRACI矩阵说明 文本格式 资源管理计划团队章程 基本信息 4W1H what: 规划资源管理是定义如何估算、获取、管理和利用端对以及实物资源的过程。why: 资源规划用于确定和…...
Kafka 消息 0 丢失的最佳实践
文章目录 Kafka 消息 0 丢失的最佳实践生产者端的最佳实践使用带有回调的 producer.send(msg, callback) 方法设置 acks all设置 retries 为一个较大的值启用幂等性与事务(Kafka 0.11)正确关闭生产者与 flush() 方法 Broker 端的最佳实践设置 unclean.l…...
机器学习算法——回归任务
回归分析是估计因变量和自变量之间关系的过程。 目录 1、多元线性回归 2、岭回归 3、Lasso回归 4、弹性网络回归 5、多项式回归 6、指数回归 7、自然对数回归 8、广义线性模型 GLM 9、Cox比例风险模型 10、决策树回归 11、随机森林回归 12、梯度提升回归 13、XGBoost回归 14、…...
【数据库】数据库基础
第一章 数据库基础 一、数据库基础1.1 数据库系统的体系结构 (三层模式两级映像)1.1.1 逻辑模式1.1.2 外模式1.1.3 内模式1.1.4 外模式/模式映象1.1.5 逻辑模式/内模式映象1.1.6 逻辑独立性1.1.7 物理独立性 1.2 数据模型 一、数据库基础 1.1 数据库系统…...
端到端自动驾驶——cnn网络搭建
论文参考:https://arxiv.org/abs/1604.07316 demo 今天主要来看一个如何通过图像直接到控制的自动驾驶端到端的项目,首先需要配置好我的仿真环境,下载软件udacity: https://d17h27t6h515a5.cloudfront.net/topher/2016/November…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
