机器学习校招面经二
快手 机器学习算法
一、AUC(Area Under the ROC Curve)怎么计算?AUC接近1可能的原因是什么?
见【搜广推校招面经四】
AUC 是评估分类模型性能的重要指标,用于衡量模型在不同阈值下区分正负样本的能力。它是 ROC 曲线(Receiver Operating Characteristic Curve)下的面积。
1.1. ROC 曲线的坐标
ROC 曲线以 真正例率(True Positive Rate, TPR) 为纵轴,假正例率(False Positive Rate, FPR) 为横轴。
1.1.1. 真正例率(TPR) = 召回率(Recall) = 灵敏度(Sensitivity)
= T P T P + F N = T P P = \frac{TP}{TP + FN} = \frac{TP}{P} =TP+FNTP=PTP
其中:
- T P TP TP:真正例(True Positives),即模型正确预测的正样本数。
- F N FN FN:假反例(False Negatives),即模型错误预测的负样本数。
2.2 假正例率(FPR)
F P R = F P F P + T N = F P N FPR = \frac{FP}{FP + TN} = \frac{FP}{N} FPR=FP+TNFP=NFP
其中:
- F P FP FP:假正例(False Positives),即模型错误预测的正样本数。
- T N TN TN:真反例(True Negatives),即模型正确预测的负样本数。
1.2. AUC 的计算公式
AUC 是 ROC 曲线下的面积,可以通过以下方法计算:
1.2.1. 积分法
A U C = ∫ 0 1 T P R ( F P R ) d F P R AUC = \int_{0}^{1} TPR(FPR) \, dFPR AUC=∫01TPR(FPR)dFPR
即对 ROC 曲线下的面积进行积分。
1.2.2. 排序法(更常用)
AUC 可以通过对样本的预测概率进行排序计算:
A U C = ∑ i = 1 N + ∑ j = 1 N − I ( p i > p j ) N + × N − AUC = \frac{\sum_{i=1}^{N_+} \sum_{j=1}^{N_-} \mathbb{I}(p_i > p_j)}{N_+ \times N_-} AUC=N+×N−∑i=1N+∑j=1N−I(pi>pj)
其中:
- ( N_+ ):正样本的数量。
- ( N_- ):负样本的数量。
- ( p_i ):第 ( i ) 个正样本的预测概率。
- ( p_j ):第 ( j ) 个负样本的预测概率。
- I ( p i > p j ) \mathbb{I}(p_i > p_j) I(pi>pj):指示函数,当 p i > p j p_i > p_j pi>pj 时为 1,否则为 0。
1.3. 手撕AUC
def cal_auc_1(label, pred):numerator = 0 # 分子denominator = 0 # 分母for i in range(len(label) - 1):for j in range(i, len(label)):if label[i] != label[j]:denominator += 1# 统计所有正负样本对中,模型把相对位置排序正确的数量r = (label[i] - label[j]) * (pred[i] - pred[j])if r > 0:numerator += 1elif r == 0:numerator += 0.5return numerator / denominator
二、LR逻辑回归的损失函数,使用熟悉的语言,写出交叉熵的伪代码
首先明确,逻辑回归的损失函数是交叉熵损失函数,也被称为对数损失函数(log loss)。
手撕:见【搜广推校招面经二十三】
import numpy as npclass LogisticRegression:def __init__(self, learning_rate=0.01, num_iterations=1000):self.learning_rate = learning_rate # 学习率self.num_iterations = num_iterations # 迭代次数self.theta = None # 模型参数def sigmoid(self, z):"""计算 Sigmoid 函数"""return 1 / (1 + np.exp(-z))def compute_cost(self, X, y):"""计算交叉熵损失函数"""m = len(y)h = self.sigmoid(np.dot(X, self.theta))cost = - (1/m) * np.sum(y * np.log(h) + (1 - y) * np.log(1 - h))return costdef gradient_descent(self, X, y):"""梯度下降优化"""m = len(y)for i in range(self.num_iterations):h = self.sigmoid(np.dot(X, self.theta)) # 计算预测值gradient = (1/m) * np.dot(X.T, (h - y)) # 计算梯度self.theta -= self.learning_rate * gradient # 更新参数if i % 100 == 0: # 每100次输出一次损失值cost = self.compute_cost(X, y)print(f"Iteration {i}, Cost: {cost}")def fit(self, X, y):"""训练模型"""m, n = X.shapeself.theta = np.zeros(n) # 初始化参数self.gradient_descent(X, y)def predict(self, X):"""预测新样本的类别"""probabilities = self.sigmoid(np.dot(X, self.theta))return probabilities >= 0.5 # 预测类别:如果大于等于 0.5,分类为 1,否则为 0
三、平均绝对误差(MAE)与均方误差(MSE)的理解及区别
见【搜广推实习面经四】
3.1. 平均绝对误差(MAE)
定义
MAE表示预测值和真实值之间绝对误差的平均值,是一个非负值,MAE越小表示模型越好。其公式如下:
M A E = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| MAE=n1i=1∑n∣yi−y^i∣
其中 y i y_i yi 是真实值, y ^ i \hat{y}_i y^i 是预测值, n n n 是样本数量。
特点
- 直观性: MAE以原始数据单位表示,因此更直观易懂。例如,在房价预测问题中,MAE可以直接解释为预测价格与实际价格之间的平均偏差。
- 鲁棒性: MAE对异常值不敏感,因为它使用的是绝对值而不是平方值来计算误差。这意味着即使存在极端值,其影响也不会被放大。
3.2. 均方误差(MSE)
定义
MSE是预测值和真实值之间误差平方的平均值。其公式如下:
M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 MSE=n1i=1∑n(yi−y^i)2
特点
- 敏感性: MSE对较大的误差更为敏感,因为误差被平方后,较大的误差会被进一步放大。这使得MSE非常适合用于检测异常值或重要的偏离情况。
- 可微性: MSE是一个平滑可微的函数,便于进行数学运算和优化算法的应用。
3.3. 区别
3.3.1. 误差处理方式
- MAE采用绝对值处理误差,所有个体差异在平均值上的权重都相等。
- MSE则通过对误差进行平方处理,给予大误差更多的权重,从而更加突出大误差的影响。
3.3.2. 对异常值的反应
- MAE由于其线性性质,对异常值具有较好的鲁棒性。
- 相比之下,MSE由于其平方特性,对异常值更加敏感。
3.3.3. 优化过程中的表现
- 在训练过程中,MAE可能导致更新梯度始终相同的问题,即使对于很小的损失值,梯度也可能较大,不利于模型的学习。
- 而MSE在这种情况下的表现较好,即便使用固定的学习率也可以有效收敛,因为其梯度随损失增大而增大,损失趋于0时则会减小。
3.3.4. 应用场景
- 如果异常点代表了商业上重要的异常情况,并且需要被检测出来,则应选用MSE作为损失函数。
- 若仅把异常值当作受损数据,则应选用MAE作为损失函数。
相关文章:
机器学习校招面经二
快手 机器学习算法 一、AUC(Area Under the ROC Curve)怎么计算?AUC接近1可能的原因是什么? 见【搜广推校招面经四】 AUC 是评估分类模型性能的重要指标,用于衡量模型在不同阈值下区分正负样本的能力。它是 ROC 曲线…...
Spring Boot如何利用Twilio Verify 发送验证码短信?
Twilio提供了一个名为 Twilio Verify 的服务,专门用于处理验证码的发送和验证。这是一个更为简化和安全的解决方案,适合需要用户身份验证的应用。 使用Twilio Verify服务的步骤 以下是如何在Spring Boot中集成Twilio Verify服务的步骤: 1.…...
毕业项目推荐:基于yolov8/yolo11的苹果叶片病害检测识别系统(python+卷积神经网络)
文章目录 概要一、整体资源介绍技术要点功能展示:功能1 支持单张图片识别功能2 支持遍历文件夹识别功能3 支持识别视频文件功能4 支持摄像头识别功能5 支持结果文件导出(xls格式)功能6 支持切换检测到的目标查看 二、数据集三、算法介绍1. YO…...
Linux的用户与权限--第二天
认知root用户(超级管理员) root用户用于最大的系统操作权限 普通用户的权限,一般在HOME目录内部不受限制 su与exit命令 su命令: su [-] 用户名 -符号是可选的,表示切换用户后加载环境变量 参数为用户名,…...
【Flink银行反欺诈系统设计方案】1.短时间内多次大额交易场景的flink与cep的实现
【flink应用系列】1.Flink银行反欺诈系统设计方案 1. 经典案例:短时间内多次大额交易1.1 场景描述1.2 风险判定逻辑 2. 使用Flink实现2.1 实现思路2.2 代码实现2.3 使用Flink流处理 3. 使用Flink CEP实现3.1 实现思路3.2 代码实现 4. 总结 1. 经典案例:短…...
HashMap的table数组何时初始化?默认容量和扩容阈值是多少?
HashMap 的 table 数组何时初始化? 答案: table 数组在第一次调用 put() 方法时初始化。 为什么? HashMap 为了节省内存,采用了“懒加载”机制。即使用 new HashMap() 创建对象时,只是计算了参数(如容量、…...
基于CURL命令封装的JAVA通用HTTP工具
文章目录 一、简要概述二、封装过程1. 引入依赖2. 定义脚本执行类 三、单元测试四、其他资源 一、简要概述 在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一款很强大的http命令行工具。它支持文件的上传和下载,是综合传输工具&…...
docker学习笔记(1)从安装docker到使用Portainer部署容器
docker学习笔记第一课 先交代背景 docker宿主机系统:阿里云ubuntu22.04 开发机系统:win11 docker镜像仓库:阿里云,此阿里云与宿主机系统没有关系,是阿里云提供的一个免费的docker仓库 代码托管平台:github&…...
数据集/API 笔记:新加坡PSI(空气污染指数)API
data.gov.sg 数据范围:2016年2月 - 2025年3月 1 获取API方式 curl --request GET \--url https://api-open.data.gov.sg/v2/real-time/api/psi 2 返回数据 API 的数据结构可以分为 3 大部分: 区域元数据(regionMetadata) →…...
计算机网络数据传输探秘:包裹如何在数字世界旅行?
计算机网络数据传输探秘:包裹如何在数字世界旅行? 一、从快递网络看数据传输本质 想象你网购了一件商品: 打包:商家用纸箱包装,贴上地址标签(数据封装)运输:包裹经过网点→分拣中心→运输车(网络节点与链路)签收:快递员核对信息后交付(数据校验与接收)数据的网络…...
笔记:代码随想录算法训练营day36:LeetCode1049. 最后一块石头的重量 II、494. 目标和、474.一和零
学习资料:代码随想录 1049.最后一块石头的重量II 力扣题目链接 思路:如何讲该问题转化为背包问题:还是对半分去碰,对半分去碰碰剩下的就是最小的。然后背包容量就是一半儿,物品重量等于物品价值等于stones[i] 和上…...
Bitmap -> Bitmap安卓设备上的显示和内存
Android 屏幕显示与 Bitmap 内存详解 前言 在 Android 开发中,理解屏幕显示单位和 Bitmap 内存占用是构建高效应用的基础。本文将详细介绍相关概念、计算公式及单位转换,并通过实例分析 Bitmap 在内存中的表现。 一、屏幕显示单位基础 1.1 基本单位及…...
QT study DAY2
作业 代码 Widget.h class Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);~Widget();void save_data(const QString& filename,const QString& data); private slots:void on_lineEdit_textChanged(); //账户栏void on_l…...
QT-自定义参数设计框架软件
QT-自定义参数设计框架软件 Chapter1 QT-自定义参数设计框架软件前言一、演示效果二、使用步骤1.应用进行参数注册2.数据库操作单例对象3.参数操作单例对象 三、下载链接 Chapter2 Qt中管理配置参数(QSettings、单例模式)1 前言2 QSettings类ini文件写in…...
VUE集成Live2d
VUE集成Live2d 目前基于大模型,可以实现一个桌面的3D动画小人,个人猜测可以简介这个项目进行实现 1-参考网址 试了很多项目,只有这个项目直观的把问题说清楚了 Live2D Vue3技术应用:https://blog.csdn.net/hh1233321/article/details/1406947…...
【CPP面经】科大讯飞 腾讯后端开发面经分享
文章目录 C 面试问题整理基础问题简答1. 内存对齐2. this 指针3. 在成员函数中删除 this4. 引用占用内存吗?5. C 越界访问场景6. 进程通信方式7. 无锁队列实现8. ping 在哪一层?实现原理?9. HTTPS 流程10. GDB 使用及 CPU 高使用定位11. 智能…...
el-card 结合 el-descriptions 作为信息展示
记录下el-card 组合 el-descriptions 实现动态展示信息 文章结构 实现效果1. el-descriptions 组件使用1.1 结合v-for实现列表渲染1.2 解析 2. 自定义 el-descriptions 样式2.1 修改背景色、字体颜色2.2 调整字体大小2.3 解析 3. el-card 结合 el-descriptions 作为信息展示3.…...
GaussDB自带诊断工具实战指南
一、引言 GaussDB是一种分布式的关系型数据库。在数据库运维中,快速定位性能瓶颈、诊断故障是保障业务连续性的关键。GaussDB内置了多种诊断工具,结合日志分析、执行计划解析和实时监控功能,帮助开发者与运维人员高效解决问题。本文深入讲解…...
LeetCode 链表章节
简单 21. 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4]示例 2: 输入:l1 [], l2…...
SSL证书和HTTPS:全面解析它们的功能与重要性
每当我们在互联网上输入个人信息、进行在线交易时,背后是否有一个安全的保障?这时,SSL证书和HTTPS便扮演了至关重要的角色。本文将全面分析SSL证书和HTTPS的含义、功能、重要性以及它们在网络安全中的作用。 一、SSL证书的定义与基本概念 S…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
【Java多线程从青铜到王者】单例设计模式(八)
wait和sleep的区别 我们的wait也是提供了一个还有超时时间的版本,sleep也是可以指定时间的,也就是说时间一到就会解除阻塞,继续执行 wait和sleep都能被提前唤醒(虽然时间还没有到也可以提前唤醒),wait能被notify提前唤醒…...
