沃丰科技结合DeepSeek大模型技术落地与应用前后效果对比
技术突破:DeepSeek算法创新,显著降低了显存占用和推理成本。仅需少量标注数据即可提升推理能力。这种突破减少了对海量数据的依赖,削弱了数据垄断企业的优势!
商业模式颠覆:DeepSeek选择完全开源模式,迫使闭源厂商(如OpenAI)面临竞争压力。近乎“免费”的性价比直接威胁现有商业模型的盈利能力!
全球AI竞争格局:DeepSeek是中国AI原创性突破,成功推动了中国从“技术跟随者”向“生态贡献者”转型,展示了通过技术创新突破美国芯片封锁的可能性!
广泛应用场景:DeepSeek在智能客服、互联网、教育、医疗、金融、电商、交通等多个领域展现出广泛的应用前景。
Part.01DeepSeek与大模型技术
大模型的发展历程
大模型的发展历程大致分为四个阶段:自然语言处理(NLP)、语言大模型、多模态大模型、推理大模型。从最初的萌芽到如今的多模态、推理大模型的广泛应用,大模型已经成为推动行业发展的重要力量。

DeepSeek特点与效果
DeepSeek-V3为自研MoE模型,多项测评成绩超越了Qwen2.5-72B等其他开源模型,并在性能上和世界顶尖的闭源模型GPT-4o等不分伯仲。通过算法和工程上的创新,DeepSeek-V3的生成速度相比V2.5模型实现了3倍的提升,为用户带来更加迅速流畅的使用体验。

DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAI-o1正式版。

DeepSeek的优势
DeepSeek大模型在开源模式、中文能力、推理能力、推理成本、合规风险等方面优势巨大,技术落地应用为各行业带来了显著变化和效果提升!

Part.02为何选择沃丰科技大模型服务
01沃丰科技为企业选择最佳大模型当前,AI大模型技术更新迭代速度极为迅猛,DeepSeek技术虽处于领先地位,但半年后极有可能涌现出新一代的大模型技术。沃丰科技始终致力于根据客户的独特属性,灵活匹配包含DeepSeek在内的最为适宜的大模型服务,确保客户能够持续享受最前沿的技术优势!

02沃丰科技大模型应用技术优势沃丰科技拥有30+位资深级AI工程师从事大模型应用技术落地工作,在行业数据积累提升场景理解方面有十几年的海量数据沉淀。并且,在企业级数据治理、全格式文档解析与分片优化技术等诸多技术方面优势显著,为企业的大模型应用提供技术保障!

Part.03DeepSeek应用前后效果对比
01复杂计算问题解答
过去智能机器人无法正确计算数理问题,比如常见的电商场景,商品在各种打折规则下的价格计算,就是出错雷区。现在DeepSeek大模型应用以后,可以智能分析和解答各种计算场景的问题。


DeepSeek应用前后对比
02大模型字段、标签抽取
DeepSeek之前的多数大模型,由于推理能力欠缺,在对话、邮件和工单智能辅助场景中,多层级复杂级联字段抽取准确率不高。某客户使用国内知名大模型抽取准确率是78.5%,OpenAI4抽取准确率是85.9%,而现在DeepSeek抽取准确率高达95%!

03生成更符合中文表达习惯
例如某客户营销场景需要生成小红书文案,使用之前主流大模型,生成的文案表达比较生硬。而现在,使用DeepSeek生成的内容”中里中气“,更加容易给中国百姓带来亲切感和舒适感。


DeepSeek应用前后对比
04数据分析与建议
在企业实际业务场景中,经常需要销售根据产品功能卖点、销售额排名、销售地区分布等各项数据指标进行分析,规划下一步的销售策略。过去大模型的分析能力弱,经常没有结果或者分析的不透彻。现在,DeepSeek大模型应用后,能够合理组织分析过程,给出专业分析结果和建议,更好的指导下一步销售过程并执行!


DeepSeek应用前后对比
相关文章:
沃丰科技结合DeepSeek大模型技术落地与应用前后效果对比
技术突破:DeepSeek算法创新,显著降低了显存占用和推理成本。仅需少量标注数据即可提升推理能力。这种突破减少了对海量数据的依赖,削弱了数据垄断企业的优势! 商业模式颠覆:DeepSeek选择完全开源模式,迫使…...
突破光学成像局限:全视野光学血管造影技术新进展
全视野光学血管造影(FFOA)作为一种实时、无创的成像技术,能够提取生物血液微循环信息,为深入探究生物组织的功能和病理变化提供关键数据。然而,传统FFOA成像方法受到光学镜头景深(DOF)的限制&am…...
2.反向传播机制简述——大模型开发深度学习理论基础
在深度学习开发中,反向传播机制是训练神经网络不可或缺的一部分。它让模型能够通过不断调整权重,从而将预测误差最小化。本文将从实际开发角度出发,简要介绍反向传播机制的核心概念、基本流程、在现代网络中的扩展,以及如何利用自…...
机器学习校招面经二
快手 机器学习算法 一、AUC(Area Under the ROC Curve)怎么计算?AUC接近1可能的原因是什么? 见【搜广推校招面经四】 AUC 是评估分类模型性能的重要指标,用于衡量模型在不同阈值下区分正负样本的能力。它是 ROC 曲线…...
Spring Boot如何利用Twilio Verify 发送验证码短信?
Twilio提供了一个名为 Twilio Verify 的服务,专门用于处理验证码的发送和验证。这是一个更为简化和安全的解决方案,适合需要用户身份验证的应用。 使用Twilio Verify服务的步骤 以下是如何在Spring Boot中集成Twilio Verify服务的步骤: 1.…...
毕业项目推荐:基于yolov8/yolo11的苹果叶片病害检测识别系统(python+卷积神经网络)
文章目录 概要一、整体资源介绍技术要点功能展示:功能1 支持单张图片识别功能2 支持遍历文件夹识别功能3 支持识别视频文件功能4 支持摄像头识别功能5 支持结果文件导出(xls格式)功能6 支持切换检测到的目标查看 二、数据集三、算法介绍1. YO…...
Linux的用户与权限--第二天
认知root用户(超级管理员) root用户用于最大的系统操作权限 普通用户的权限,一般在HOME目录内部不受限制 su与exit命令 su命令: su [-] 用户名 -符号是可选的,表示切换用户后加载环境变量 参数为用户名,…...
【Flink银行反欺诈系统设计方案】1.短时间内多次大额交易场景的flink与cep的实现
【flink应用系列】1.Flink银行反欺诈系统设计方案 1. 经典案例:短时间内多次大额交易1.1 场景描述1.2 风险判定逻辑 2. 使用Flink实现2.1 实现思路2.2 代码实现2.3 使用Flink流处理 3. 使用Flink CEP实现3.1 实现思路3.2 代码实现 4. 总结 1. 经典案例:短…...
HashMap的table数组何时初始化?默认容量和扩容阈值是多少?
HashMap 的 table 数组何时初始化? 答案: table 数组在第一次调用 put() 方法时初始化。 为什么? HashMap 为了节省内存,采用了“懒加载”机制。即使用 new HashMap() 创建对象时,只是计算了参数(如容量、…...
基于CURL命令封装的JAVA通用HTTP工具
文章目录 一、简要概述二、封装过程1. 引入依赖2. 定义脚本执行类 三、单元测试四、其他资源 一、简要概述 在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一款很强大的http命令行工具。它支持文件的上传和下载,是综合传输工具&…...
docker学习笔记(1)从安装docker到使用Portainer部署容器
docker学习笔记第一课 先交代背景 docker宿主机系统:阿里云ubuntu22.04 开发机系统:win11 docker镜像仓库:阿里云,此阿里云与宿主机系统没有关系,是阿里云提供的一个免费的docker仓库 代码托管平台:github&…...
数据集/API 笔记:新加坡PSI(空气污染指数)API
data.gov.sg 数据范围:2016年2月 - 2025年3月 1 获取API方式 curl --request GET \--url https://api-open.data.gov.sg/v2/real-time/api/psi 2 返回数据 API 的数据结构可以分为 3 大部分: 区域元数据(regionMetadata) →…...
计算机网络数据传输探秘:包裹如何在数字世界旅行?
计算机网络数据传输探秘:包裹如何在数字世界旅行? 一、从快递网络看数据传输本质 想象你网购了一件商品: 打包:商家用纸箱包装,贴上地址标签(数据封装)运输:包裹经过网点→分拣中心→运输车(网络节点与链路)签收:快递员核对信息后交付(数据校验与接收)数据的网络…...
笔记:代码随想录算法训练营day36:LeetCode1049. 最后一块石头的重量 II、494. 目标和、474.一和零
学习资料:代码随想录 1049.最后一块石头的重量II 力扣题目链接 思路:如何讲该问题转化为背包问题:还是对半分去碰,对半分去碰碰剩下的就是最小的。然后背包容量就是一半儿,物品重量等于物品价值等于stones[i] 和上…...
Bitmap -> Bitmap安卓设备上的显示和内存
Android 屏幕显示与 Bitmap 内存详解 前言 在 Android 开发中,理解屏幕显示单位和 Bitmap 内存占用是构建高效应用的基础。本文将详细介绍相关概念、计算公式及单位转换,并通过实例分析 Bitmap 在内存中的表现。 一、屏幕显示单位基础 1.1 基本单位及…...
QT study DAY2
作业 代码 Widget.h class Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);~Widget();void save_data(const QString& filename,const QString& data); private slots:void on_lineEdit_textChanged(); //账户栏void on_l…...
QT-自定义参数设计框架软件
QT-自定义参数设计框架软件 Chapter1 QT-自定义参数设计框架软件前言一、演示效果二、使用步骤1.应用进行参数注册2.数据库操作单例对象3.参数操作单例对象 三、下载链接 Chapter2 Qt中管理配置参数(QSettings、单例模式)1 前言2 QSettings类ini文件写in…...
VUE集成Live2d
VUE集成Live2d 目前基于大模型,可以实现一个桌面的3D动画小人,个人猜测可以简介这个项目进行实现 1-参考网址 试了很多项目,只有这个项目直观的把问题说清楚了 Live2D Vue3技术应用:https://blog.csdn.net/hh1233321/article/details/1406947…...
【CPP面经】科大讯飞 腾讯后端开发面经分享
文章目录 C 面试问题整理基础问题简答1. 内存对齐2. this 指针3. 在成员函数中删除 this4. 引用占用内存吗?5. C 越界访问场景6. 进程通信方式7. 无锁队列实现8. ping 在哪一层?实现原理?9. HTTPS 流程10. GDB 使用及 CPU 高使用定位11. 智能…...
el-card 结合 el-descriptions 作为信息展示
记录下el-card 组合 el-descriptions 实现动态展示信息 文章结构 实现效果1. el-descriptions 组件使用1.1 结合v-for实现列表渲染1.2 解析 2. 自定义 el-descriptions 样式2.1 修改背景色、字体颜色2.2 调整字体大小2.3 解析 3. el-card 结合 el-descriptions 作为信息展示3.…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)
+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...
Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...
CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?
在现代前端开发中,Utility-First (功能优先) CSS 框架已经成为主流。其中,Tailwind CSS 无疑是市场的领导者和标杆。然而,一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...
鸿蒙Navigation路由导航-基本使用介绍
1. Navigation介绍 Navigation组件是路由导航的根视图容器,一般作为Page页面的根容器使用,其内部默认包含了标题栏、内容区和工具栏,其中内容区默认首页显示导航内容(Navigation的子组件)或非首页显示(Nav…...
