C#:LINQ学习笔记01:LINQ基础概念
一、LINQ 架构体系
1. LINQ 的核心思想
- 统一查询模型:对对象、XML、数据库等不同数据源使用一致的语法。
- 强类型检查:编译时类型安全,减少运行时错误。
2. 核心组件
技术 | 数据源 | 典型场景 |
---|---|---|
LINQ to Objects | 内存集合 (IEnumerable ) | 过滤/排序集合数据 |
LINQ to XML | XML 文档 | 解析/查询 XML 节点 |
LINQ to SQL | 关系数据库 | 将查询翻译为 SQL 执行 |
关键代码示例:
// LINQ to Objects
var numbers = new List<int> { 1, 2, 3 };
var query = numbers.Where(n => n > 1);// LINQ to XML
XDocument doc = XDocument.Load("data.xml");
var elements = doc.Descendants("Book").Where(x => (int)x.Element("Price") > 50);// LINQ to SQL(伪代码)
var db = new DataContext();
var users = db.Users.Where(u => u.Age > 18);
二、查询表达式 vs 方法语法
1. 本质区别
- 查询表达式:类 SQL 语法(
from...where...select
),可读性高。 - 方法语法:链式调用扩展方法(
Where()
/Select()
),灵活性更强。
2. 转换关系
所有查询表达式会被编译器翻译为方法语法。
代码对比:
// 查询表达式
var query1 = from num in numbers where num % 2 == 0 select num * 2;// 方法语法
var query2 = numbers.Where(num => num % 2 == 0).Select(num => num * 2);
三、IEnumerable 接口解析
1. 核心机制
IEnumerable
:定义迭代能力(通过GetEnumerator()
)。IEnumerator
:实现遍历逻辑(MoveNext()
和Current
)。
2. LINQ 的延迟执行
- 查询定义时不执行,直到迭代结果(如
foreach
或ToList()
)时才触发。
代码验证延迟执行:
var numbers = new List<int> { 1, 2, 3 };
var query = numbers.Select(n => {Console.WriteLine($"Processing {n}");return n * 2;
});// 此时无输出
foreach (var num in query) { } // 输出:Processing 1, Processing 2, Processing 3
四、创建首个 LINQ 查询(三步法)
1. 定义数据源
var products = new List<Product> {new Product { Name = "Apple", Price = 15 },new Product { Name = "Laptop", Price = 5000 },new Product { Name = "Book", Price = 80 }
};
2. 编写查询
// 方法语法
var expensiveProducts = products.Where(p => p.Price > 100).OrderBy(p => p.Name);
3. 执行查询
foreach (var product in expensiveProducts)
{Console.WriteLine(product.Name);
}
五、练习:集合过滤与投影
任务 1:过滤数据
// 数据源
var numbers = Enumerable.Range(1, 100);// 目标:选出 3 的倍数且大于 50 的数字
var result = numbers.Where(n => n % 3 == 0 && n > 50);
任务 2:投影转换
// 数据源
var persons = new List<Person> { /* 包含姓名和年龄的对象 */ };// 目标:生成 { Name = "张三", Initial = 'Z' } 形式的新对象
var initials = persons.Select(p => new {Name = p.Name,Initial = p.Name[0]
});
六、扩展思考
- 如何通过
yield return
自定义一个延迟执行的 LINQ 操作? IQueryable
和IEnumerable
在查询数据库时的区别?- 如何组合
Where().OrderBy().Select()
实现复杂查询?
相关文章:
C#:LINQ学习笔记01:LINQ基础概念
一、LINQ 架构体系 1. LINQ 的核心思想 统一查询模型:对对象、XML、数据库等不同数据源使用一致的语法。强类型检查:编译时类型安全,减少运行时错误。 2. 核心组件 技术数据源典型场景LINQ to Objects内存集合 (IEnumerable)过滤/排序集合…...

15Metasploit框架介绍
metasploit目录结构 MSF ——the metasploit framework 的简称。MSF高度模块化,即框架结构由多个module组成,是全球最受欢迎的工具 是一筐开源安全漏洞利用和测试工具,集成了各种平台上常见的溢出漏洞和流行sheellcode,并且保持…...
NLP如何训练AI模型以理解知识
一、自然语言处理(NLP)的定义与核心目标 1. 什么是自然语言处理? NLP是计算机科学与人工智能的交叉领域,旨在让机器具备以下能力: • 理解:解析人类语言(文本或语音)的语法、语义和…...

【树莓派学习】树莓派3B+的安装和环境配置
【树莓派学习】树莓派3B的安装和环境配置 文章目录 【树莓派学习】树莓派3B的安装和环境配置一、搭建Raspberry Pi树莓派运行环境1、下载树莓派镜像下载器2、配置wifi及ssh3、SSH访问树莓派1)命令行登录2)远程桌面登录3)VNC登录(推…...
python连接neo4j的方式汇总
python连接neo4j的方式汇总 1.官方驱动(neo4j)特点代码示例 2. 全功能ORM(py2neo)特点代码示例 3. 领域驱动设计框架(neomodel-odm)特点代码示例 4. 异步高性能驱动(asyncneo4j)特点…...

Graph RAG 迎来记忆革命:“海马体”机制让问答更精准!
随着生成式 AI 技术的快速发展,RAG(Retrieval-Augmented Generation)和 Agent 成为企业应用大模型的最直接途径。然而,传统的 RAG 系统在准确性和动态学习能力上存在明显不足,尤其是在处理复杂上下文和关联性任务时表现不佳。近期,一篇论文提出了 HippoRAG 2,这一新型 R…...

Spring(三)容器-注入
一 自动注入Autowire 代码实现: package org.example.spring01.service;import org.springframework.stereotype.Service;Service public class UserService {}package org.example.spring01.controller;import lombok.Data; import lombok.ToString; import org.…...

剧本杀门店预约小程序:市场发展下的刚需
在剧本杀爆发式增长下,门店数字化运营的模式正在市场中逐渐展开,线下门店的竞争方向已发生了全新转变! 目前,数字化发展已经成为了消费市场的刚需,利用网络的便捷性提高服务,优化运营,提高自身…...

stable-diffusion-webui 加载模型文件
背景 stable-diffusion-webui 安装完毕后,默认的模型生成的效果图并不理想,可以根据具体需求加载指定的模型文件。国内 modelscope 下载速度较快,以该站为例进行介绍 操作步骤 找到指定的模型文件 在 https://modelscope.cn/models 中查找…...

Ubuntu20.04双系统安装及软件安装(十一):向日葵远程软件
Ubuntu20.04双系统安装及软件安装(十一):向日葵远程软件 打开向日葵远程官网,下载图形版本: 在下载目录下打开终端,执行: sudo dpkg -i SunloginClient(按tab键自动补全)出现报错: …...

华为云 | 快速搭建DeepSeek推理系统
DeepSeek(深度求索)作为一款国产AI大模型,凭借其高性能、低成本和多模态融合能力,在人工智能领域崛起,并在多个行业中展现出广泛的应用潜力。 如上所示,在华为云解决方案实践中,华为云提供的快速…...

printf 与前置++、后置++、前置--、后置-- 的关系
# 前置和前置-- 先看一段代码 大家是不是认为printf输出的是 2 3 3 2 1 1 但是实际输出的是 3 3 3 1 1 1 在这两行printf函数代码里,编译器会先计算 a 和 --a 的值,然后再 从右向左 开始输出。 printf函数中,如果有多个…...

centos7操作系统下安装docker,及查看docker进程是否启动
centos7下安装docker,需要用到的yun命令 (yum命令用于添加卸载程序) 1.设置仓库: yum-config-manager \--add-repo \http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 2.安装 Docker Engine-Community yum in…...
【向量数据库Weaviate】 和Elasticsearch的区别
Weaviate 和 Elasticsearch 是两种不同类型的数据库,设计目标和应用场景有显著差异。以下是它们的核心区别和适用场景的详细对比: 1. 设计目标与核心能力 维度WeaviateElasticsearch核心能力向量数据库 图数据库(语义搜索优先)全…...

深度学习-大白话解释循环神经网络RNN
目录 一、RNN的思想 二、RNN的基本结构 网络架构 关键点 三、RNN的前向传播 四、RNN的挑战:梯度爆炸和梯度消失 问题分析 示例推导 五、LSTM:RNN的改进 核心组件 网络架构 3. LSTM 的工作流程 4. 数学公式总结 5. LSTM 的优缺点 优点 缺点 6. LSTM 的…...

python3.13安装教程【2025】python3.13超详细图文教程(包含安装包)
文章目录 前言一、python3.13安装包下载二、Python 3.13安装步骤三、Python3.13验证 前言 本教程将为你详细介绍 Python 3.13 python3.13安装教程,帮助你顺利搭建起 Python 3.13 开发环境,快速投身于 Python 编程的精彩实践中。 一、python3.13安装包下…...

RocketMQ的运行架构
目录 1. 核心组件(1) NameServer(2) Broker(3) Producer(4) Consumer 2. 消息流转流程3. 高可用机制4. 扩展性与负载均衡5.容错机制5. 特殊功能支持6. 典型部署架构总结 RocketMQ 是一款高性能、高可靠的分布式消息中间件,其运行架构设计为分布式、可扩展、高可用的…...
SLAM文献之-DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras
DROID-SLAM 是一种结合深度学习与传统视觉SLAM技术的先进算法,其核心目标是通过端到端可训练的深度神经网络来实现高精度的相机位姿估计和稠密三维重建。与传统SLAM方法不同,DROID-SLAM采用深度学习网络来估计深度信息,提供更高的精度与鲁棒性…...
nano 是 Linux 系统中的一个 命令行文本编辑器
nano 是 Linux 系统中的一个 命令行文本编辑器,用于在终端中直接编辑文本文件。它相比 vi 或 vim 更加简单易用,适合新手操作。 具体解释: 在你给出的命令 sudo nano /etc/nfs.conf 中: sudo:以管理员权限运行命令&a…...
JAVA毕设项目-基于SSM框架的百色学院创新实践学分认定系统源码+设计文档
文末获取源码数据库文档 感兴趣的可以先收藏,有毕设问题,项目以及论文撰写等问题都可以和博主沟通,尽最大努力帮助更多的人! 百色学院创新实践学分认定系统设计与实现 摘 要 本百色学院创新实践学分认定系统是针对目前实践学分认定…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...