文献分享: ConstBERT固定数目向量编码文档
😂图放这了,大道至简的 idea \text{idea} idea不愧是 ECIR \text{ECIR} ECIR

👉原论文
1. ConstBERT \textbf{1. ConstBERT} 1. ConstBERT的原理
1️⃣模型的改进点:相较于 ColBERT \text{ColBERT} ColBERT为每个 Token \text{Token} Token生成一个向量, ConstBERT \text{ConstBERT} ConstBERT只为段落生成固定 C C C个向量
- 嵌入阶段:为查询 Q Q Q和段落 P P P的每个 Token \text{Token} Token都生成一个 d d d维向量,是为 { q 1 , … , q N } \{q_{1},\ldots,q_{N}\} {q1,…,qN}和 { p 1 , … , p M } \{p_{1},\ldots,p_{M}\} {p1,…,pM}
- 线性变换:拼接所有段落单向量为 [ p 1 , ⋯ , p M ] ∈ R d M \left[p_{1},\cdots,p_{M}\right]\text{∈}\mathbb{R}^{dM} [p1,⋯,pM]∈RdM,进行 W ∈ R M k × C k \mathbf{W}\text{∈}\mathbb{R}^{Mk\text{×}Ck} W∈RMk×Ck投影得 [ δ 1 , ⋯ , δ C ] = W T [ p 1 , ⋯ , p M ] ∈ R d C \left[\delta_{1},\cdots, \delta_{C}\right]\text{=}\mathbf{W}^{T}\left[p_{1},\cdots,p_{M}\right]\text{∈}\mathbb{R}^{dC} [δ1,⋯,δC]=WT[p1,⋯,pM]∈RdC
- 后期交互:同 ColBERT \text{ColBERT} ColBERT,为每个 q i q_i qi找到与其内积最大的 MaxSim ( q i , δ ) = δ p i \text{MaxSim}(q_i,\delta)\text{=}\delta_{p_i} MaxSim(qi,δ)=δpi,最后将所有 MaxSim \text{MaxSim} MaxSim相加得到相似度评分
2️⃣改进的动机:为何非要固定数目的段落向量
- 存储效率上:设定 C < M C\text{<}M C<M后,能降低段落嵌入所占的空间
- 计算效率上:设定 C < M C\text{<}M C<M后,将原有 O ( M N ) O(MN) O(MN)的查询复杂度降为了 O ( C N ) O(CN) O(CN)
- 系统级优化:使得内存对齐,规避了变长文档表示导致内存碎片化,从而降低了 Cache Miss \text{Cache Miss} Cache Miss
2. ConstBERT \textbf{2. ConstBERT} 2. ConstBERT的实验结果
1️⃣效果:当 C = 32 C\text{=}32 C=32时,在 MsMarco/BEIR \text{MsMarco/BEIR} MsMarco/BEIR等数据集上,查询效果与 ColBERT \text{ColBERT} ColBERT相当(用 MRR@10/nDCG@10 \text{MRR@10/nDCG@10} MRR@10/nDCG@10衡量)
2️⃣效率:相比 ColBERT \text{ColBERT} ColBERT对段落的存储空间需求减少了一半多,端到端检索响应速度也显著加快
相关文章:

文献分享: ConstBERT固定数目向量编码文档
😂图放这了,大道至简的 idea \text{idea} idea不愧是 ECIR \text{ECIR} ECIR 👉原论文 1. ConstBERT \textbf{1. ConstBERT} 1. ConstBERT的原理 1️⃣模型的改进点:相较于 ColBERT \text{ColBERT} ColBERT为每个 Token \text{Tok…...

学习记录-用例设计编写
黑马测试视频记录 目录 一、 软件测试流程 二、测试用例编写格式 1、等价类法 2、边界值分析法 3、 判定表法 4、场景法编辑 5、错误推荐法 一、 软件测试流程 二、测试用例编写格式 1、等价类法 2、边界值分析法 3、 判定表法 4、场景法 5、错误推荐法 时间紧任务重…...

学习工具的一天之(burp)
第一呢一定是先下载 【Java环境】:Java Downloads | Oracle 下来是burp的下载 Download Burp Suite Community Edition - PortSwigger 【下载方法二】关注的一个博主 【BurpSuite 安装激活使用详细上手教程 web安全测试工具】https://www.bilibili.com/video/BV…...

el-tree右键节点动态位置展示菜单;el-tree的节点图片动态根据节点属性color改变背景色;加遮罩层(opacity)
一、el-tree右键节点动态位置展示菜单 关键:@node-contextmenu="handleRightClick"与@node-click=“handleNodeClick” <div class="content"><el-tabs class="tabs" @tab-click="handleClick" v-model="Modal"…...

K8s 1.27.1 实战系列(一)准备工作
一、主机规划与硬件要求 1、节点数量 至少需要 3 台服务器(1 台 Master 节点,2 台 Worker 节点)。本地测试可缩容:若仅用于测试,可缩减为 1 个 Master 和 1 个 Worker,但需注意稳定性风险。2、硬件配置 Master 节点:建议 2 核 CPU、8GB 内存、80GB 硬盘。Worker 节…...

说一下SpringBoot3新特新和JDK17新特性
JDK1.8(Java8)新特性 stream流式编程 流处理 Stream API 提供了对集合数据进行操作的一种高效、简洁的方式。它支持顺序和并行的聚合操作 如:过滤(filter)、排序(sort)、映射(map&…...

Linux系统服务安全检测手记
一:服务器ip暴露ip和端口的安全问题 服务器IP和端口暴露在外网中确实存在一定的安全风险,以下是几个主要的安全问题及相应的缓解措施: ### 主要安全问题 1. **直接攻击**: - 暴露的IP地址和开放的端口可能成为黑客直接攻击的…...

鸿蒙与DeepSeek深度整合:构建下一代智能操作系统生态
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/north 目录 技术融合背景与价值鸿蒙分布式架构解析DeepSeek技术体系剖析核心整合架构设计智能调度系统实现…...

[创业之路-329]:华为铁三角实施的步骤
一、通用过程 华为铁三角实施的步骤主要包括以下几个关键阶段: 1、明确角色与职责 确定铁三角成员:组建由客户经理(AR)、解决方案经理(SR)和交付经理(FR)组成的铁三角团队。制定岗…...

1.15-16-17-18迭代器与生成器,函数,数据结构,模块
目录 15,Python3 迭代器与生成器15-1 迭代器15-1-1 基础知识15-1-2 迭代器与for循环工作原理 15-2 生成器(本质就是迭代器)15-2-1 yield 表达式15-2-2 三元表达式15-2-3 列表生成式15-2-4 其他生成器(——没有元祖生成式——&…...

java面向对象(详细讲解)
第一章 类和对象 1.面向对象的介绍 1.面向过程:自己的事情自己做,代表语言c语言 2.面向对象:自己的事情别人做,代表语言java 3.为啥要使用面向对象思想编程:很多功能别人给我们实现好了,我们只需要拿过…...

代码随想录二刷|图论2
图论 基础知识 1 无向图 (1)度:一个顶点连n条边就度为n (2)权 加权无向图:有边长的无向图 (3)通道:两个顶点之间有一些边和点,并且没有重复的边 路&am…...

毕业项目推荐:基于yolov8/yolov5/yolo11的暴力行为检测识别系统(python+卷积神经网络)
文章目录 概要一、整体资源介绍技术要点功能展示:功能1 支持单张图片识别功能2 支持遍历文件夹识别功能3 支持识别视频文件功能4 支持摄像头识别功能5 支持结果文件导出(xls格式)功能6 支持切换检测到的目标查看 二、数据集三、算法介绍1. YO…...

服务器CPU微架构
1、微架构图 前端:预解码、解码、分支预测、L1指令缓存、指令TLB缓存 后端:顺序重排缓存器ROB处理依赖,调度器送到执行引擎 执行引擎:8路超标量,每一路可以进行独立的微操作处理 Port0、1、5、6支持整数、浮点数的加…...

用本地浏览器打开服务器上使用的Tensorboard
文章目录 前言一、Tensorboard的安装二、使用步骤1.服务器上的设置2.在本地打开 总结 前言 最近有使用服务器上的Tensorboard的需求,踩了几个雷,现已在搜索和帮助下解决,总结于此。 一、Tensorboard的安装 pip install tensorboard2.12.0注…...

Nginx或Tengine服务器配置SSL证书
本文将全面介绍如何在Nginx或Tengine服务器配置SSL证书,具体包括下载和上传证书文件,在Nginx上配置证书文件、证书链和证书密钥等参数,以及安装证书后结果的验证。成功配置SSL证书后,您将能够通过HTTPS加密通道安全访问Nginx服务器…...

【基础4】插入排序
核心思想 插入排序是一种基于元素比较的原地排序算法,其核心思想是将数组分为“已排序”和“未排序”两部分,逐个将未排序元素插入到已排序部分的正确位置。 例如扑克牌在理牌的时候,一般会将大小王、2、A、花牌等按大小顺序插入到左边&…...

2安卓开发的主要语言
1. Kotlin(官方首选语言) 定位:Google 官方推荐的首选 Android 开发语言(2019 年起)。 优势: 简洁高效:语法糖减少样板代码(如 data class 自动生成 equals()/hashCode()࿰…...

Python练习(握手问题,进制转换,日期问题,位运算,求和)
一. 握手问题 代码实现 ans0for i in range(1,51):for j in range(i1,51):if i<7 and j<7:continueelse:ans 1print(ans) 这道题可以看成是50个人都握了手减去7个人没握手的次数 答案:1204 二.将十进制整数拆解 2.1门牌制作 代码实现 ans0for i in ra…...

vtk 3D坐标标尺应用 3D 刻度尺
2d刻度尺 : vtk 2D 刻度尺 2D 比例尺-CSDN博客 简介: 3D 刻度尺,也是常用功能,功能强大 3D 刻度尺 CubeAxesActor vtkCubeAxes调整坐标轴的刻度、原点和显示效果,包括关闭小标尺、固定坐标轴原点,以及设置FlyMode模…...

蓝桥杯每日一题:第一周周四哞叫时间
蓝桥杯每日一题:第一周周四哞叫时间 疑惑:如何把复杂度控制在Q(n),怎么枚举a和b,longlong的形式又该怎么输入(考虑用string) 思路:枚举倒数第二个b前面有多少个a 这是一…...

DeepSeek本地接口调用(Ollama)
前言 上篇博文,我们通过Ollama搭建了本地的DeepSeek模型,本文主要是方便开发人员,如何通过代码或工具,通过API接口调用本地deepSeek模型 前文:DeepSeek-R1本地搭建_deepseek 本地部署-CSDN博客 注:本文不仅…...

自由学习记录(41)
代理服务器的核心功能是在客户端(用户设备)和目标服务器(网站/资源服务器)之间充当“中介”,具体过程如下: 代理服务器的工作流程 当客户端希望访问某个网站(比如 example.com)时&…...

【编写UI自动化测试集】Appium+Python+Unittest+HTMLRunner
简介 获取AppPackage和AppActivity 定位UI控件的工具 脚本结构 PageObject分层管理 HTMLTestRunner生成测试报告 启动appium server服务 以python文件模式执行脚本生成测试报告 下载与安装 下载需要自动化测试的App并安装到手机 获取AppPackage和AppActivity 方法一 有源码的…...

大模型如何协助知识图谱进行实体关系之间的分析
大模型在知识图谱中协助进行实体关系分析的方式主要体现在以下几个方面: 增强数据标注与知识抽取 大模型通过强大的自然语言处理能力,能够高效地对原始数据进行实体、关系和事件的标注,从而提高数据处理的效率和准确性。例如,Deep…...

推荐几款优秀的PDF转电子画册的软件
当然可以!以下是几款优秀的PDF转电子画册的软件推荐,内容简洁易懂,这些软件都具有易用性和互动性,适合不同需求的用户使用。 ❶ FLBOOK|在线创作平台 支持PDF直接导入生成仿真翻页电子书。提供15主题模板与字体库&a…...

【大模型技术】LlamaFactory 的原理解析与应用
LlamaFactory 是一个基于 LLaMA 系列模型(如 LLaMA、LLaMA2、Vicuna 等)的开源框架,旨在帮助开发者和研究人员快速实现大语言模型(LLM, Large Language Model)的微调、推理和部署。它提供了一套完整的工具链࿰…...

Golang依赖注入实战:从容器管理到应用实践
#作者:曹付江 文章目录 1、示例: 管理依赖关系的容器1.1. 日志记录器设置1.2. 数据库连接设置1.3. 管理依赖关系的容器 2、如何使用容器3、结论 依赖注入(DI)是一种在软件应用程序中促进松散耦合和可测试性的设计模式。它允许将依…...

Node.js二:第一个Node.js应用
精心整理了最新的面试资料和简历模板,有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 创建的时候我们需要用到VS code编写代码 我们先了解下 Node.js 应用是由哪几部分组成的: 1.引入 required 模块:我们可以使用 requi…...

【Python爬虫】利用代理IP爬取跨境电商AI选品分析
引言 随着DeepSeek的流行,越来越多的用户开始尝试将AI工具融入到日常工作当中,借助AI的强大功能提高工作效率。最近又掀起了一波企业出海的小高潮,那么如果是做跨境电商业务,怎么将AI融入工作流中呢?在做跨境电商的时候…...