当前位置: 首页 > news >正文

‌学习DeepSeek V3 与 R1 核心区别(按功能维度分类)

一、定位与架构
  1. V3(通用型模型)

    • 定位:多模态通用大模型,擅长文本生成、多语言翻译、智能客服等多样化任务‌12。
    • 架构:混合专家(MoE)架构,总参数 ‌6710 亿‌,每次推理激活 ‌370 亿参数‌,降低计算成本‌34。
  2. R1(推理专用模型)

    • 定位:专注于数学证明、代码生成、逻辑推理等复杂任务,输出附带“思维链”解释‌12。
    • 架构:基于强化学习(RL)优化,支持 ‌15 亿至 700 亿参数‌ 的蒸馏版本,动态门控机制提升推理效率‌14。

二、训练与性能
  1. V3 训练方法

    • 采用 ‌FP8 混合精度‌ 训练,分三个阶段:高质量数据训练、序列长度扩展、监督微调(SFT)+ 知识蒸馏‌45。
    • 性能优势:长文本生成(支持 ‌128K 上下文窗口‌)、代码补全速度提升 ‌3.8 倍‌‌35。
  2. R1 训练方法

    • 完全依赖强化学习(RL),摒弃监督微调,通过 ‌群体相对策略优化(GRPO)‌ 提升稳定性‌23。
    • 性能优势:数学竞赛(AIME 2024 通过率 ‌79.8%‌)、逻辑推理任务(DROP F1 分数 ‌92.2%‌)‌14。

三、应用场景与成本
  1. V3 适用场景

    • 高性价比通用任务(如对话式 AI、多语言翻译),API 成本低至 ‌0.14 元/百万输入 Token‌‌23。
    • 支持开源部署,适配 AMD GPU 和华为昇腾 NPU‌3。
  2. R1 适用场景

    • 专业推理需求(如科研分析、教育工具),API 成本较高(输入 ‌0.55 元/百万 Token‌,输出 ‌2.19 元/百万 Token‌)‌23。
    • 支持本地部署蒸馏版(如 14B 参数),适合私有化推理场景‌36。

四、交互与功能差异
  1. V3 交互特点

    • 直接返回通用答案,例如模糊问题“如何做数据分析”会提供标准化步骤‌7。
    • 长文本处理可能丢失细节(如 100 页 PDF 分析)‌7。
  2. R1 交互特点

    • 主动追问细节(如要求明确“电商销售分析”场景),并生成分步代码方案‌7。
    • 安全策略更严格,例如危险问题(如“制作 TNT”)会直接屏蔽并提示合规建议‌7。

总结对比

维度DeepSeek V3DeepSeek R1
核心能力通用任务高效处理复杂逻辑推理与可解释性
架构成本高性价比,MoE 架构优化算力推理专用,强化学习训练成本高
典型场景智能客服、内容创作数学竞赛、代码生成、决策支持

相关文章:

‌学习DeepSeek V3 与 R1 核心区别(按功能维度分类)

‌一、定位与架构‌ ‌V3(通用型模型)‌ 定位:多模态通用大模型,擅长文本生成、多语言翻译、智能客服等多样化任务‌12。架构:混合专家(MoE)架构,总参数 ‌6710 亿‌,每次…...

C++中的 互斥量

1.概念: 为什么:线程的异步性,不是按照时间来的!!! C并发以及多线程的秘密-CSDN博客 目的 多线程编程中,当多个线程可能同时访问和修改共享资源时,会导致数据不一致或程序错误。…...

直接法估计相机位姿

引入 在前面的文章:运动跟踪——Lucas-Kanade光流中,我们了解到特征点法存在一些缺陷,并且用光流法追踪像素点的运动来替代特征点法进行特征点匹配的过程来解决这些缺陷。而这篇文章要介绍的直接法则是通过计算特征点在下一时刻图像中的位置…...

PHP动态网站建设

如何配置虚拟主机 1. 学习提纲 本地发布与互联网发布:介绍了如何通过本地IP地址和互联网域名发布网站。 虚拟主机配置与访问:讲解了如何配置虚拟主机,并通过自定义域名访问不同的站点目录。 Web服务器配置:详细说明了如何配置A…...

【gRPC】Java高性能远程调用之gRPC详解

gRPC详解 一、什么是gRPC?二、用proto生成代码2.1、前期准备2.2、protobuf插件安装 三、简单 RPC3.1、开发gRPC服务端3.2、开发gRPC客户端3.3、验证gRPC服务 四、服务器端流式 RPC4.1、开发一个gRPC服务,类型是服务端流4.2、开发一个客户端,调…...

数据结构知识学习小结

一、动态内存分配基本步骤 1、内存分配简单示例: 个人对于示例的理解: 定义一个整型的指针变量p(着重认为它是一个“变量”我觉得可能会更好理解),这个变量用来存地址的,而不是“值”,malloc函…...

分布式锁—2.Redisson的可重入锁一

大纲 1.Redisson可重入锁RedissonLock概述 2.可重入锁源码之创建RedissonClient实例 3.可重入锁源码之lua脚本加锁逻辑 4.可重入锁源码之WatchDog维持加锁逻辑 5.可重入锁源码之可重入加锁逻辑 6.可重入锁源码之锁的互斥阻塞逻辑 7.可重入锁源码之释放锁逻辑 8.可重入锁…...

计算机毕业设计SpringBoot+Vue.js球队训练信息管理系统(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

FFmpeg入门:最简单的音视频播放器

FFmpeg入门:最简单的音视频播放器 前两章,我们已经了解了分别如何构建一个简单和音频播放器和视频播放器。 FFmpeg入门:最简单的音频播放器 FFmpeg入门:最简单的视频播放器 本章我们将结合上述两章的知识,看看如何融…...

java 查找两个集合的交集部分数据

利用了Java 8的Stream API&#xff0c;代码简洁且效率高 import java.util.stream.Collectors; import java.util.List; import java.util.HashSet; import java.util.Set;public class ListIntersection {public static List<Long> findIntersection(List<Long> …...

【系统架构设计师】以数据为中心的体系结构风格

目录 1. 说明2. 仓库体系结构风格3. 黑板体系结构风格 1. 说明 1.以数据为中心的体系结构风格主要包括仓库体系结构风格和黑板体系结构风格。 2. 仓库体系结构风格 1.仓库&#xff08;Repository&#xff09;是存储和维护数据的中心场所。2.在仓库风格中&#xff0c;有两种不…...

通过HTML有序列表(ol/li)实现自动递增编号的完整解决方案

以下是通过HTML有序列表(ol/li)实现自动递增编号的完整解决方案&#xff1a; <!DOCTYPE html> <html> <head> <style> /* 基础样式 */ ol {margin: 1em 0;padding-left: 2em; }/* 方案1&#xff1a;默认数字编号 */ ol.default {list-style-type: dec…...

【Python 数据结构 4.单向链表】

目录 一、单向链表的基本概念 1.单向链表的概念 2.单向链表的元素插入 元素插入的步骤 3.单向链表的元素删除 元素删除的步骤 4.单向链表的元素查找 元素查找的步骤 5.单向链表的元素索引 元素索引的步骤 6.单向链表的元素修改 元素修改的步骤 二、Python中的单向链表 ​编辑 三…...

基于 vLLM 部署 LSTM 时序预测模型的“下饭”(智能告警预测与根因分析部署)指南

Alright,各位看官老爷们,准备好迎接史上最爆笑、最通俗易懂的 “基于 vLLM 部署 LSTM 时序预测模型的智能告警预测与根因分析部署指南” 吗? 保证让你笑出猪叫,看完直接变身技术大咖!🚀😂 咱们今天的主题,就像是要打造一个“智能运维小管家”! 这个小管家,不仅能提…...

Java多线程与高并发专题——ConcurrentHashMap 在 Java7 和 8 有何不同?

引入 上一篇我们提到HashMap 是线程不安全的&#xff0c;并推荐使用线程安全同时性能比较好的 ConcurrentHashMap。 而在 Java 8 中&#xff0c;对于 ConcurrentHashMap 这个常用的工具类进行了很大的升级&#xff0c;对比之前 Java 7 版本在诸多方面都进行了调整和变化。不过…...

NL2SQL-基于Dify+阿里通义千问大模型,实现自然语音自动生产SQL语句

本文基于Dify阿里通义千问大模型&#xff0c;实现自然语音自动生产SQL语句功能&#xff0c;话不多说直接上效果图 我们可以试着问他几个问题 查询每个部门的员工数量SELECT d.dept_name, COUNT(e.emp_no) AS employee_count FROM employees e JOIN dept_emp de ON e.emp_no d…...

LeetCode 1328.破坏回文串:贪心

【LetMeFly】1328.破坏回文串&#xff1a;贪心 力扣题目链接&#xff1a;https://leetcode.cn/problems/break-a-palindrome/ 给你一个由小写英文字母组成的回文字符串 palindrome &#xff0c;请你将其中 一个 字符用任意小写英文字母替换&#xff0c;使得结果字符串的 字典…...

计算机视觉|ViT详解:打破视觉与语言界限

一、ViT 的诞生背景 在计算机视觉领域的发展中&#xff0c;卷积神经网络&#xff08;CNN&#xff09;一直占据重要地位。自 2012 年 AlexNet 在 ImageNet 大赛中取得优异成绩后&#xff0c;CNN 在图像分类任务中显示出强大能力。随后&#xff0c;VGG、ResNet 等深度网络架构不…...

//定义一个方法,把int数组中的数据按照指定的格式拼接成一个字符串返回,调用该方法,并在控制台输出结果

import java.util.Scanner; public class cha{ public static void main(String[] args){//定义一个方法&#xff0c;把int数组中的数据按照指定的格式拼接成一个字符串返回&#xff0c;调用该方法&#xff0c;并在控制台输出结果//eg&#xff1a; 数组为&#xff1a;int[] arr…...

Python快捷手册

Python快捷手册 后续会陆续更新Python对应的依赖或者工具使用方法 文章目录 Python快捷手册[toc]1-依赖1-词云小工具2-图片添加文字3-BeautifulSoup网络爬虫4-Tkinter界面绘制5-PDF转Word 2-开发1-多线程和队列 3-运维1-Requirement依赖2-波尔实验室3-Anaconda3使用教程4-CentO…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...