当前位置: 首页 > news >正文

opencv 模板匹配方法汇总

在OpenCV中,模板匹配是一种在较大图像中查找特定模板图像位置的技术。OpenCV提供了多种模板匹配方法,通过cv2.matchTemplate函数实现,该函数支持的匹配方式主要有以下6种,下面详细介绍每种方法的原理、特点和适用场景。

1. cv2.TM_SQDIFF(平方差匹配法)

  • 原理:计算模板与图像中每个可能位置的像素值平方差的总和。匹配结果值越小,表示匹配程度越高。
  • 特点:对光照变化比较敏感,因为它直接比较像素值的差异。
  • 公式 R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) − I ( x + x ′ , y + y ′ ) ) 2 R(x,y)=\sum _{x',y'} (T(x',y') - I(x + x',y + y'))^2 R(x,y)=x,y(T(x,y)I(x+x,y+y))2,其中 T T T 是模板图像, I I I 是输入图像, R R R 是匹配结果图像。
  • 适用场景:适用于模板和目标图像的光照条件较为一致的情况。

2. cv2.TM_SQDIFF_NORMED(归一化平方差匹配法)

  • 原理:是cv2.TM_SQDIFF的归一化版本,将平方差结果归一化到 [0, 1] 范围内。匹配结果值越接近 0,表示匹配程度越高。
  • 特点:对光照变化有一定的鲁棒性,因为归一化操作减少了不同图像之间像素值范围差异的影响。
  • 适用场景:当模板和目标图像的光照有一定差异,但差异不是特别大时适用。

3. cv2.TM_CCORR(相关性匹配法)

  • 原理:计算模板与图像中每个可能位置的像素值相关性。匹配结果值越大,表示匹配程度越高。
  • 特点:对光照变化也比较敏感,因为它直接依赖于像素值的相关性。
  • 公式 R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) ⋅ I ( x + x ′ , y + y ′ ) ) R(x,y)=\sum _{x',y'} (T(x',y') \cdot I(x + x',y + y')) R(x,y)=x,y(T(x,y)I(x+x,y+y))
  • 适用场景:适用于模板和目标图像的光照条件较为一致,且模板和目标之间的亮度模式相似的情况。

4. cv2.TM_CCORR_NORMED(归一化相关性匹配法)

  • 原理:是cv2.TM_CCORR的归一化版本,将相关性结果归一化到 [0, 1] 范围内。匹配结果值越接近 1,表示匹配程度越高。
  • 特点:对光照变化有较好的鲁棒性,因为归一化操作消除了不同图像之间像素值范围差异的影响。
  • 适用场景:在光照条件不稳定的情况下,是一种比较常用的匹配方法。

5. cv2.TM_CCOEFF(相关系数匹配法)

  • 原理:计算模板与图像中每个可能位置的像素值相关系数。匹配结果值越大,表示匹配程度越高。相关系数衡量的是两个信号之间的线性相关性。
  • 特点:对光照变化有一定的鲁棒性,因为它考虑了模板和图像的均值。
  • 适用场景:适用于模板和目标图像的光照有一定差异,但整体结构相似的情况。

6. cv2.TM_CCOEFF_NORMED(归一化相关系数匹配法)

  • 原理:是cv2.TM_CCOEFF的归一化版本,将相关系数结果归一化到 [-1, 1] 范围内。匹配结果值越接近 1,表示匹配程度越高。
  • 特点:对光照变化具有较强的鲁棒性,是一种比较稳定的匹配方法。
  • 适用场景:在各种光照条件下都能有较好的表现,是最常用的模板匹配方法之一。

代码示例

import cv2
import numpy as np# 读取图像和模板
img = cv2.imread('image.jpg', 0)
template = cv2.imread('template.jpg', 0)
h, w = template.shape[:2]# 定义匹配方法
methods = ['cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED']for meth in methods:img2 = img.copy()method = eval(meth)# 执行模板匹配res = cv2.matchTemplate(img2, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 根据不同的匹配方法确定最佳匹配位置if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 在图像上绘制矩形框标记匹配位置cv2.rectangle(img2, top_left, bottom_right, 255, 2)# 显示结果cv2.imshow(meth, img2)cv2.waitKey(0)
cv2.destroyAllWindows()

这个示例代码展示了如何使用不同的模板匹配方法在图像中查找模板的位置,并在图像上绘制矩形框标记匹配结果。你可以根据实际需求选择合适的匹配方法。

#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;// 定义模板匹配方法名称和对应的枚举值
const char* method_names[] = { "TM_SQDIFF", "TM_SQDIFF_NORMED", "TM_CCORR","TM_CCORR_NORMED", "TM_CCOEFF", "TM_CCOEFF_NORMED" };
const int methods[] = { TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR,TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED };int main()
{// 读取图像和模板Mat img = imread("image.jpg", IMREAD_GRAYSCALE);Mat template_img = imread("template.jpg", IMREAD_GRAYSCALE);if (img.empty() || template_img.empty()){cout << "Could not open or find the image or template" << endl;return -1;}int h = template_img.rows;int w = template_img.cols;// 遍历不同的匹配方法for (int i = 0; i < 6; i++){Mat img2 = img.clone();Mat result;// 执行模板匹配matchTemplate(img2, template_img, result, methods[i]);double minVal, maxVal;Point minLoc, maxLoc;// 查找匹配结果中的最小值和最大值以及它们的位置minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);Point topLeft;bool isMatch = false;// 根据不同的匹配方法确定最佳匹配位置,并判断是否匹配成功if (methods[i] == TM_SQDIFF || methods[i] == TM_SQDIFF_NORMED){topLeft = minLoc;if (methods[i] == TM_SQDIFF_NORMED && minVal < 0.1) // 可调整阈值{isMatch = true;}}else if (methods[i] == TM_CCORR_NORMED && maxVal > 0.8) // 可调整阈值{topLeft = maxLoc;isMatch = true;}else if (methods[i] == TM_CCOEFF_NORMED && maxVal > 0.8) // 可调整阈值{topLeft = maxLoc;isMatch = true;}if (isMatch){Point bottomRight(topLeft.x + w, topLeft.y + h);// 在图像上绘制矩形框标记匹配位置rectangle(img2, topLeft, bottomRight, Scalar(255), 2);}else{cout << "No match found using " << method_names[i] << endl;}// 显示结果imshow(method_names[i], img2);}waitKey(0);destroyAllWindows();return 0;
}

相关文章:

opencv 模板匹配方法汇总

在OpenCV中&#xff0c;模板匹配是一种在较大图像中查找特定模板图像位置的技术。OpenCV提供了多种模板匹配方法&#xff0c;通过cv2.matchTemplate函数实现&#xff0c;该函数支持的匹配方式主要有以下6种&#xff0c;下面详细介绍每种方法的原理、特点和适用场景。 1. cv2.T…...

Embedding技术:DeepWalkNode2vec

引言 在推荐系统中&#xff0c;Graph Embedding技术已经成为一种强大的工具&#xff0c;用于捕捉用户和物品之间的复杂关系。本文将介绍Graph Embedding的基本概念、原理及其在推荐系统中的应用。 什么是Graph Embedding&#xff1f; Graph Embedding是一种将图中的节点映射…...

微信小程序注册组件

在微信小程序中注册组件分为自定义组件的创建和全局/局部注册&#xff0c;下面为你详细介绍具体步骤和示例。 自定义组件的创建 自定义组件由四个文件组成&#xff0c;分别是 .js&#xff08;脚本文件&#xff09;、.json&#xff08;配置文件&#xff09;、.wxml&#xff08…...

【docker】安装mysql,修改端口号并重启,root改密

我的docker笔记 【centOS】安装docker环境&#xff0c;替换国内镜像 1. 配置镜像源 使用阿里云镜像加速器&#xff0c;编辑/etc/docker/daemon.json sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": ["https:/…...

自定义wordpress三级导航菜单代码

首先&#xff0c;在你的主题functions.php文件中&#xff0c;添加以下代码以注册一个新的菜单位置&#xff1a; function mytheme_register_menus() {register_nav_menus(array(primary-menu > __(Primary Menu, mytheme))); } add_action(init, mytheme_register_menus); …...

洛谷 P1480 A/B Problem(高精度详解)c++

题目链接&#xff1a;P1480 A/B Problem - 洛谷 1.题目分析 1&#xff1a;说明这里是高精度除以低精度的形式&#xff0c;为什么不是高精度除以高精度的形式&#xff0c;是因为它很少见&#xff0c;它的模拟方式是用高精度减法来做的&#xff0c;并不能用小学列竖式的方法模拟…...

JAVA入门——网络编程简介

自己学习时的笔记&#xff0c;可能有点水&#xff08; 以后可能还会补充&#xff08;大概率不会&#xff09; 一、基本概念 网络编程三要素&#xff1a; IP 设备在网络中的唯一标识 端口号 应用软件在设备中的唯一标识两个字节表示的整数&#xff0c;0~1023用于知名的网络…...

Ubuntu 合上屏幕 不待机 设置

有时候需要Ubuntu的机器合上屏幕的时候也能正常工作&#xff0c;而不是处于待机状态。 需要进行配置文件的设置&#xff0c;并重启即可。 1. 修改配置文件 /etc/systemd/logind.conf sudo vi /etc/systemd/logind.conf 然后输入i&#xff0c;进入插入状态&#xff0c;修改如…...

捣鼓180天,我写了一个相册小程序

&#x1f64b;为什么要做土著相册这样一个产品&#xff1f; ➡️在高压工作之余&#xff0c;我喜欢浏览B站上的熊猫幼崽视频来放松心情。有天在家族群里看到了大嫂分享的侄女卖萌照片&#xff0c;同样感到非常解压。于是开始翻阅过去的聊天记录&#xff0c;却发现部分图片和视…...

短分享-Flink图构建

一、背景 通过简单的书写map、union、keyby等代码&#xff0c;Flink便能构建起一个庞大的分布式计算任务&#xff0c;Flink如何实现的这个酷炫功能呢&#xff1f;我们本次分享Flink做的第一步&#xff0c;将代码解析构建成图 源码基于Flink 2.10&#xff0c;书籍参考《Flink核…...

【监督学习】支持向量机步骤及matlab实现

支持向量机 &#xff08;四&#xff09;支持向量机1.算法步骤2. MATLAB 实现参考资料 &#xff08;四&#xff09;支持向量机 支持向量机&#xff08;Support Vector Machine, SVM&#xff09;是一种用于分类、回归分析以及异常检测的监督学习模型。SVM特别擅长处理高维空间的…...

机器学习-随机森林解析

目录 一、.随机森林的思想 二、随机森林构建步骤 1.自助采样 2.特征随机选择 3构建决策树 4.集成预测 三. 随机森林的关键优势 ​**(1) 减少过拟合** ​**(2) 高效并行化** ​**(3) 特征重要性评估** ​**(4) 耐抗噪声** 四. 随机森林的优缺点 ​优点 ​缺点 五.…...

Javaweb后端spring事务管理 事务四大特性ACID

2步操作&#xff0c;只能同时成功&#xff0c;同时失败&#xff0c;要放在一个事务中&#xff0c;最后提交事务或者回滚事务 事务控制 事务管理进阶 事务的注解 这是所有异常都会回滚 事务注解 事务的传播行为 四大特性...

在Spring Boot + MyBatis中优雅处理多表数据清洗:基于XML的配置化方案

问题背景 在实际业务中&#xff0c;我们常会遇到数据冗余问题。例如&#xff0c;一个公司表&#xff08;sys_company&#xff09;中存在多条相同公司名的记录&#xff0c;但只有一条有效&#xff08;del_flag0&#xff09;&#xff0c;其余需要删除。删除前需将关联表&#xf…...

【无标题】四色拓扑模型与宇宙历史重构的猜想框架

### 四色拓扑模型与宇宙历史重构的猜想框架 --- #### **一、理论基础&#xff1a;四色拓扑与时空全息原理的融合** 1. **宇宙背景信息的拓扑编码** - **大尺度结构网络**&#xff1a;将星系团映射为四色顶点&#xff0c;纤维状暗物质结构作为边&#xff0c;构建宇宙尺度…...

[特殊字符] Django 常用命令

&#x1f680; Django 常用命令大全&#xff1a;从开发到部署 Django 提供了许多实用的命令&#xff0c;可以用于 数据库管理、调试、测试、用户管理、运行服务器、部署 等。 本教程将详细介绍 Django 开发中最常用的命令&#xff0c;并提供 示例&#xff0c;帮助你更高…...

mysql中如何保证没有幻读发生

在 MySQL 中&#xff0c;幻读&#xff08;Phantom Read&#xff09;是指在一个事务中&#xff0c;两次相同的查询返回了不同的结果集&#xff0c;通常是由于其他事务插入或删除了符合查询条件的数据。为了保证没有幻读&#xff0c;MySQL 主要通过 事务隔离级别 和 锁机制 来实现…...

Golang实践录:go发布版本信息收集

go发布版本信息收集。 背景 本文从官方、网络资料收罗有关go的发布历史概况。主要目的是能快速了解golang不同版本的变更。鉴于官方资料为英文&#xff0c;为方便阅读&#xff0c;使用工具翻译成中文&#xff0c;重要特性参考其它资料补充/修改。由于发布版本内容较多&#xf…...

字节跳动AI原生编程工具Trae和百度“三大开发神器”AgentBuilder、AppBuilder、ModelBuilder的区别是?

字节跳动AI编程工具Trae与百度"三大开发神器"&#xff08;AgentBuilder、AppBuilder、ModelBuilder&#xff09;在定位、功能架构和技术路线上存在显著差异&#xff0c;具体区别如下&#xff1a; 一、核心定位差异 Trae&#xff1a;AI原生集成开发环境&#xff08;AI…...

【UCB CS 61B SP24】Lecture 21: Data Structures 5: Priority Queues and Heaps 学习笔记

本文介绍了优先队列与堆&#xff0c;分析了最小堆的插入与删除过程&#xff0c;并用 Java 实现了一个通用类型的最小堆。 1. 优先队列 1.1 介绍 优先队列是一种抽象数据类型&#xff0c;其元素按照优先级顺序被处理。不同于普通队列的先进先出&#xff08;FIFO&#xff09;&…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

02.运算符

目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&&#xff1a;逻辑与 ||&#xff1a;逻辑或 &#xff01;&#xff1a;逻辑非 短路求值 位运算符 按位与&&#xff1a; 按位或 | 按位取反~ …...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...