当前位置: 首页 > news >正文

opencv 模板匹配方法汇总

在OpenCV中,模板匹配是一种在较大图像中查找特定模板图像位置的技术。OpenCV提供了多种模板匹配方法,通过cv2.matchTemplate函数实现,该函数支持的匹配方式主要有以下6种,下面详细介绍每种方法的原理、特点和适用场景。

1. cv2.TM_SQDIFF(平方差匹配法)

  • 原理:计算模板与图像中每个可能位置的像素值平方差的总和。匹配结果值越小,表示匹配程度越高。
  • 特点:对光照变化比较敏感,因为它直接比较像素值的差异。
  • 公式 R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) − I ( x + x ′ , y + y ′ ) ) 2 R(x,y)=\sum _{x',y'} (T(x',y') - I(x + x',y + y'))^2 R(x,y)=x,y(T(x,y)I(x+x,y+y))2,其中 T T T 是模板图像, I I I 是输入图像, R R R 是匹配结果图像。
  • 适用场景:适用于模板和目标图像的光照条件较为一致的情况。

2. cv2.TM_SQDIFF_NORMED(归一化平方差匹配法)

  • 原理:是cv2.TM_SQDIFF的归一化版本,将平方差结果归一化到 [0, 1] 范围内。匹配结果值越接近 0,表示匹配程度越高。
  • 特点:对光照变化有一定的鲁棒性,因为归一化操作减少了不同图像之间像素值范围差异的影响。
  • 适用场景:当模板和目标图像的光照有一定差异,但差异不是特别大时适用。

3. cv2.TM_CCORR(相关性匹配法)

  • 原理:计算模板与图像中每个可能位置的像素值相关性。匹配结果值越大,表示匹配程度越高。
  • 特点:对光照变化也比较敏感,因为它直接依赖于像素值的相关性。
  • 公式 R ( x , y ) = ∑ x ′ , y ′ ( T ( x ′ , y ′ ) ⋅ I ( x + x ′ , y + y ′ ) ) R(x,y)=\sum _{x',y'} (T(x',y') \cdot I(x + x',y + y')) R(x,y)=x,y(T(x,y)I(x+x,y+y))
  • 适用场景:适用于模板和目标图像的光照条件较为一致,且模板和目标之间的亮度模式相似的情况。

4. cv2.TM_CCORR_NORMED(归一化相关性匹配法)

  • 原理:是cv2.TM_CCORR的归一化版本,将相关性结果归一化到 [0, 1] 范围内。匹配结果值越接近 1,表示匹配程度越高。
  • 特点:对光照变化有较好的鲁棒性,因为归一化操作消除了不同图像之间像素值范围差异的影响。
  • 适用场景:在光照条件不稳定的情况下,是一种比较常用的匹配方法。

5. cv2.TM_CCOEFF(相关系数匹配法)

  • 原理:计算模板与图像中每个可能位置的像素值相关系数。匹配结果值越大,表示匹配程度越高。相关系数衡量的是两个信号之间的线性相关性。
  • 特点:对光照变化有一定的鲁棒性,因为它考虑了模板和图像的均值。
  • 适用场景:适用于模板和目标图像的光照有一定差异,但整体结构相似的情况。

6. cv2.TM_CCOEFF_NORMED(归一化相关系数匹配法)

  • 原理:是cv2.TM_CCOEFF的归一化版本,将相关系数结果归一化到 [-1, 1] 范围内。匹配结果值越接近 1,表示匹配程度越高。
  • 特点:对光照变化具有较强的鲁棒性,是一种比较稳定的匹配方法。
  • 适用场景:在各种光照条件下都能有较好的表现,是最常用的模板匹配方法之一。

代码示例

import cv2
import numpy as np# 读取图像和模板
img = cv2.imread('image.jpg', 0)
template = cv2.imread('template.jpg', 0)
h, w = template.shape[:2]# 定义匹配方法
methods = ['cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED']for meth in methods:img2 = img.copy()method = eval(meth)# 执行模板匹配res = cv2.matchTemplate(img2, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 根据不同的匹配方法确定最佳匹配位置if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 在图像上绘制矩形框标记匹配位置cv2.rectangle(img2, top_left, bottom_right, 255, 2)# 显示结果cv2.imshow(meth, img2)cv2.waitKey(0)
cv2.destroyAllWindows()

这个示例代码展示了如何使用不同的模板匹配方法在图像中查找模板的位置,并在图像上绘制矩形框标记匹配结果。你可以根据实际需求选择合适的匹配方法。

#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;// 定义模板匹配方法名称和对应的枚举值
const char* method_names[] = { "TM_SQDIFF", "TM_SQDIFF_NORMED", "TM_CCORR","TM_CCORR_NORMED", "TM_CCOEFF", "TM_CCOEFF_NORMED" };
const int methods[] = { TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR,TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED };int main()
{// 读取图像和模板Mat img = imread("image.jpg", IMREAD_GRAYSCALE);Mat template_img = imread("template.jpg", IMREAD_GRAYSCALE);if (img.empty() || template_img.empty()){cout << "Could not open or find the image or template" << endl;return -1;}int h = template_img.rows;int w = template_img.cols;// 遍历不同的匹配方法for (int i = 0; i < 6; i++){Mat img2 = img.clone();Mat result;// 执行模板匹配matchTemplate(img2, template_img, result, methods[i]);double minVal, maxVal;Point minLoc, maxLoc;// 查找匹配结果中的最小值和最大值以及它们的位置minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);Point topLeft;bool isMatch = false;// 根据不同的匹配方法确定最佳匹配位置,并判断是否匹配成功if (methods[i] == TM_SQDIFF || methods[i] == TM_SQDIFF_NORMED){topLeft = minLoc;if (methods[i] == TM_SQDIFF_NORMED && minVal < 0.1) // 可调整阈值{isMatch = true;}}else if (methods[i] == TM_CCORR_NORMED && maxVal > 0.8) // 可调整阈值{topLeft = maxLoc;isMatch = true;}else if (methods[i] == TM_CCOEFF_NORMED && maxVal > 0.8) // 可调整阈值{topLeft = maxLoc;isMatch = true;}if (isMatch){Point bottomRight(topLeft.x + w, topLeft.y + h);// 在图像上绘制矩形框标记匹配位置rectangle(img2, topLeft, bottomRight, Scalar(255), 2);}else{cout << "No match found using " << method_names[i] << endl;}// 显示结果imshow(method_names[i], img2);}waitKey(0);destroyAllWindows();return 0;
}

相关文章:

opencv 模板匹配方法汇总

在OpenCV中&#xff0c;模板匹配是一种在较大图像中查找特定模板图像位置的技术。OpenCV提供了多种模板匹配方法&#xff0c;通过cv2.matchTemplate函数实现&#xff0c;该函数支持的匹配方式主要有以下6种&#xff0c;下面详细介绍每种方法的原理、特点和适用场景。 1. cv2.T…...

Embedding技术:DeepWalkNode2vec

引言 在推荐系统中&#xff0c;Graph Embedding技术已经成为一种强大的工具&#xff0c;用于捕捉用户和物品之间的复杂关系。本文将介绍Graph Embedding的基本概念、原理及其在推荐系统中的应用。 什么是Graph Embedding&#xff1f; Graph Embedding是一种将图中的节点映射…...

微信小程序注册组件

在微信小程序中注册组件分为自定义组件的创建和全局/局部注册&#xff0c;下面为你详细介绍具体步骤和示例。 自定义组件的创建 自定义组件由四个文件组成&#xff0c;分别是 .js&#xff08;脚本文件&#xff09;、.json&#xff08;配置文件&#xff09;、.wxml&#xff08…...

【docker】安装mysql,修改端口号并重启,root改密

我的docker笔记 【centOS】安装docker环境&#xff0c;替换国内镜像 1. 配置镜像源 使用阿里云镜像加速器&#xff0c;编辑/etc/docker/daemon.json sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": ["https:/…...

自定义wordpress三级导航菜单代码

首先&#xff0c;在你的主题functions.php文件中&#xff0c;添加以下代码以注册一个新的菜单位置&#xff1a; function mytheme_register_menus() {register_nav_menus(array(primary-menu > __(Primary Menu, mytheme))); } add_action(init, mytheme_register_menus); …...

洛谷 P1480 A/B Problem(高精度详解)c++

题目链接&#xff1a;P1480 A/B Problem - 洛谷 1.题目分析 1&#xff1a;说明这里是高精度除以低精度的形式&#xff0c;为什么不是高精度除以高精度的形式&#xff0c;是因为它很少见&#xff0c;它的模拟方式是用高精度减法来做的&#xff0c;并不能用小学列竖式的方法模拟…...

JAVA入门——网络编程简介

自己学习时的笔记&#xff0c;可能有点水&#xff08; 以后可能还会补充&#xff08;大概率不会&#xff09; 一、基本概念 网络编程三要素&#xff1a; IP 设备在网络中的唯一标识 端口号 应用软件在设备中的唯一标识两个字节表示的整数&#xff0c;0~1023用于知名的网络…...

Ubuntu 合上屏幕 不待机 设置

有时候需要Ubuntu的机器合上屏幕的时候也能正常工作&#xff0c;而不是处于待机状态。 需要进行配置文件的设置&#xff0c;并重启即可。 1. 修改配置文件 /etc/systemd/logind.conf sudo vi /etc/systemd/logind.conf 然后输入i&#xff0c;进入插入状态&#xff0c;修改如…...

捣鼓180天,我写了一个相册小程序

&#x1f64b;为什么要做土著相册这样一个产品&#xff1f; ➡️在高压工作之余&#xff0c;我喜欢浏览B站上的熊猫幼崽视频来放松心情。有天在家族群里看到了大嫂分享的侄女卖萌照片&#xff0c;同样感到非常解压。于是开始翻阅过去的聊天记录&#xff0c;却发现部分图片和视…...

短分享-Flink图构建

一、背景 通过简单的书写map、union、keyby等代码&#xff0c;Flink便能构建起一个庞大的分布式计算任务&#xff0c;Flink如何实现的这个酷炫功能呢&#xff1f;我们本次分享Flink做的第一步&#xff0c;将代码解析构建成图 源码基于Flink 2.10&#xff0c;书籍参考《Flink核…...

【监督学习】支持向量机步骤及matlab实现

支持向量机 &#xff08;四&#xff09;支持向量机1.算法步骤2. MATLAB 实现参考资料 &#xff08;四&#xff09;支持向量机 支持向量机&#xff08;Support Vector Machine, SVM&#xff09;是一种用于分类、回归分析以及异常检测的监督学习模型。SVM特别擅长处理高维空间的…...

机器学习-随机森林解析

目录 一、.随机森林的思想 二、随机森林构建步骤 1.自助采样 2.特征随机选择 3构建决策树 4.集成预测 三. 随机森林的关键优势 ​**(1) 减少过拟合** ​**(2) 高效并行化** ​**(3) 特征重要性评估** ​**(4) 耐抗噪声** 四. 随机森林的优缺点 ​优点 ​缺点 五.…...

Javaweb后端spring事务管理 事务四大特性ACID

2步操作&#xff0c;只能同时成功&#xff0c;同时失败&#xff0c;要放在一个事务中&#xff0c;最后提交事务或者回滚事务 事务控制 事务管理进阶 事务的注解 这是所有异常都会回滚 事务注解 事务的传播行为 四大特性...

在Spring Boot + MyBatis中优雅处理多表数据清洗:基于XML的配置化方案

问题背景 在实际业务中&#xff0c;我们常会遇到数据冗余问题。例如&#xff0c;一个公司表&#xff08;sys_company&#xff09;中存在多条相同公司名的记录&#xff0c;但只有一条有效&#xff08;del_flag0&#xff09;&#xff0c;其余需要删除。删除前需将关联表&#xf…...

【无标题】四色拓扑模型与宇宙历史重构的猜想框架

### 四色拓扑模型与宇宙历史重构的猜想框架 --- #### **一、理论基础&#xff1a;四色拓扑与时空全息原理的融合** 1. **宇宙背景信息的拓扑编码** - **大尺度结构网络**&#xff1a;将星系团映射为四色顶点&#xff0c;纤维状暗物质结构作为边&#xff0c;构建宇宙尺度…...

[特殊字符] Django 常用命令

&#x1f680; Django 常用命令大全&#xff1a;从开发到部署 Django 提供了许多实用的命令&#xff0c;可以用于 数据库管理、调试、测试、用户管理、运行服务器、部署 等。 本教程将详细介绍 Django 开发中最常用的命令&#xff0c;并提供 示例&#xff0c;帮助你更高…...

mysql中如何保证没有幻读发生

在 MySQL 中&#xff0c;幻读&#xff08;Phantom Read&#xff09;是指在一个事务中&#xff0c;两次相同的查询返回了不同的结果集&#xff0c;通常是由于其他事务插入或删除了符合查询条件的数据。为了保证没有幻读&#xff0c;MySQL 主要通过 事务隔离级别 和 锁机制 来实现…...

Golang实践录:go发布版本信息收集

go发布版本信息收集。 背景 本文从官方、网络资料收罗有关go的发布历史概况。主要目的是能快速了解golang不同版本的变更。鉴于官方资料为英文&#xff0c;为方便阅读&#xff0c;使用工具翻译成中文&#xff0c;重要特性参考其它资料补充/修改。由于发布版本内容较多&#xf…...

字节跳动AI原生编程工具Trae和百度“三大开发神器”AgentBuilder、AppBuilder、ModelBuilder的区别是?

字节跳动AI编程工具Trae与百度"三大开发神器"&#xff08;AgentBuilder、AppBuilder、ModelBuilder&#xff09;在定位、功能架构和技术路线上存在显著差异&#xff0c;具体区别如下&#xff1a; 一、核心定位差异 Trae&#xff1a;AI原生集成开发环境&#xff08;AI…...

【UCB CS 61B SP24】Lecture 21: Data Structures 5: Priority Queues and Heaps 学习笔记

本文介绍了优先队列与堆&#xff0c;分析了最小堆的插入与删除过程&#xff0c;并用 Java 实现了一个通用类型的最小堆。 1. 优先队列 1.1 介绍 优先队列是一种抽象数据类型&#xff0c;其元素按照优先级顺序被处理。不同于普通队列的先进先出&#xff08;FIFO&#xff09;&…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...