当前位置: 首页 > news >正文

浅论数据库聚合:合理使用LambdaQueryWrapper和XML

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、数据库聚合替代内存计算(关键优化)
  • 二、批量处理优化
  • 四、区域特殊处理解耦
  • 五、防御性编程增强


前言

技术认知点:使用 XML 编写 SQL 聚合查询并不会导致所有数据加载到内存,反而能 大幅减少内存占用并提升性能。

        LocalDateTime localDateTime = TimeUtilTool.startOfDay();LocalDateTime crossTime = LocalDateTime.now().minusDays(1);List<AAA> list = SERVICE1.list(new LambdaQueryWrapper<AAA>().between(AAA::GETTIME, localDateTime.minusDays(1), localDateTime));Map<String, List<AAA>> areaMap = list.stream().collect(Collectors.groupingBy(AAA::getAreaId));

一个对象占得内存很小,可能只有1kb;但是当一百万条时,数据量就达到了接近1个G,如果这时候处理数据,极易出现OOM;
应用层计算的劣势
GC压力:大量临时对象增加垃圾回收频率
多次遍历内存:stream().collect(groupingBy) 导致 O(n²) 时间复杂度
对象转换开销:MyBatis 将每条记录转换为 PO 对象消耗资源
全量数据加载:即使只需要统计值,仍需传输所有字段

所以要学习数据库聚合


原始代码分析

 @XxlJob("MethodDD")public void MethodDD(){LocalDateTime localDateTime = TimeUtilTool.startOfDay();LocalDateTime crossTime = LocalDateTime.now().minusDays(1);List<AAA> list = SERVICE1.list(new LambdaQueryWrapper<AAA>().between(AAA::GETTIME, localDateTime.minusDays(1), localDateTime));Map<String, List<AAA>> areaMap = list.stream().collect(Collectors.groupingBy(AAA::getAreaId));List<BBB> result = SAVEDATA(areaMap, crossTime);saveAreaStatisticsDaily(result, crossTime);}private List<BBB> SAVEDATA(Map<String, List<AAA>> areaMap, LocalDateTime crossTime) {List<CCCC> ccc = cacheTool.areaDictionary();List<BBB> result = new ArrayList<>();areaMap.forEach((areaId, areaList)->{BBB po = new BBB();Optional<CCCC> first = ccc.stream().filter(ccc -> ccc.getId().toString().equals(areaId)).findFirst();first.ifPresent(ccc -> {po.setAreaId(areaId);if(ccc.getId().toString().equals(areaId)){po.setAreaName(AreaNameBuilder.getAreaName(ccc));}Double carSpeed = 0.0;if (areaList == null || areaList.isEmpty()) {// 处理空列表的情况carSpeed = 0.0;} else {double totalSpeed = areaList.parallelStream()  .mapToDouble(AAA::getCarSpeed).sum();carSpeed = totalSpeed / areaList.size();}po.setMeanSpeed(new BigDecimal(carSpeed));po.setFlow(areaList.size());Map<String, List<AAA>> carTypeMap = areaList.stream().collect(Collectors.groupingBy(AAA::getCarType));carTypeMap.forEach((carType, carTypeList) ->{if (carType.equals("1")){po.setSmallCCCARFlow(carTypeList.size());} else if (carType.equals("2")){po.setMediumLargeBBBULLFlow(carTypeList.size());} else if (carType.equals("3")){po.setSmallMediumttttFlow(carTypeList.size());}else if (carType.equals("4")){po.setLargettttFlow(carTypeList.size());}else if (carType.equals("5")){po.setHazardousChemicalCCCARFlow(carTypeList.size());}else if (carType.equals("6")){po.setMotorcycle(carTypeList.size());}else if (carType.equals("7")){po.setOther(carTypeList.size());}});});po.setCrossTime(crossTime);result.add(po);statsService.save(po);});List<String> areaIds = areaMap.keySet().stream().toList();for (CCCC ccc : ccc) {if (!areaIds.contains(ccc.getId().toString())){BBB po = new BBB();po.setAreaId(ccc.getId().toString());po.setAreaName(AreaNameBuilder.getAreaName(ccc));po.setCrossTime(crossTime);result.add(po);statsService.save(po);}}return result;}

首先,用户有一个定时任务,每天凌晨统计卡口数据,并将结果保存到数据库。当前代码可能存在性能问题,尤其是当数据量大的时候,全量查询和处理会导致内存和性能问题。

  1. 全量数据加载到内存:使用trafficCCCARService.list查询所有符合条件的数据,如果数据量很大,会导致内存压力,甚至OOM。
  2. 多次遍历数据流:在处理每个区域的数据时,多次使用流操作进行分组和统计,可能导致性能下降。
  3. 频繁的数据库写入操作:在SAVEDATA方法中,每次处理一个区域就调用statsService.save(po),这样频繁的数据库插入操作效率低下。
  4. 硬编码的区域ID判断:在saveAreaStatisticsDaily方法中,直接判断特定的区域ID,这样的代码难以维护,且不符合面向对象的设计原则。

首先,全量数据的问题,可以考虑分页查询或者使用数据库的聚合功能,减少数据传输量。
其次,多次遍历数据流可以通过合并处理逻辑来减少遍历次数。
数据库写入操作应该批量进行,而不是逐条插入。
硬编码的问题可以通过枚举或配置来解决:代码中存在重复的区域ID判断,这部分应该抽象出来,使用更灵活的方式处理,比如使用Map来映射区域ID和对应的字段,避免大量的if-else语句。

一、数据库聚合替代内存计算(关键优化)

LambdaQueryWrapper和XML

  1. XML 只是定义 SQL 的方式:无论是 XML 还是 LambdaQueryWrapper,最终都会生成 SQL 发送到数据库执行
  2. 性能差异的根源:在于 SQL 本身的执行效率 和 数据传输量,而非 XML/Lambda 的代码形式

关键区别:

优化前(LambdaQueryWrapper):拉取全量原始数据到应用层 → 内存计算(危险!)
优化后(XML 聚合):在数据库层完成聚合 → 只返回计算结果(安全高效)

这时候要在数据库层面进行处理了;

// 新增 DAO 方法
@Select("SELECT area_id, " +"COUNT(*) AS flow, " +"AVG(car_speed) AS mean_speed, " +"SUM(CASE car_type WHEN '1' THEN 1 ELSE 0 END) AS small_CCCAR_flow, " +"SUM(CASE car_type WHEN '2' THEN 1 ELSE 0 END) AS medium_large_BBBULL_flow " +// 其他车型..."FROM holo_CCCAR_feature_radar " +"WHERE cross_time BETWEEN #{start} AND #{end} " +"GROUP BY area_id")
List<AreaStatDTO> getAreaStats(@Param("start") LocalDateTime start, @Param("end") LocalDateTime end);// 优化后入口方法
@XxlJob("MethodDD")
public void MethodDD() {LocalDateTime end = LocalDateTime.now().truncatedTo(ChronoUnit.DAYS);LocalDateTime start = end.minusDays(1);// 1. 数据库聚合计算List<AreaStatDTO> stats = CCCARRecordDAO.getAreaStats(start, end);// 2. 构建统计对象List<bbbPO> statsList = buildStatistics(stats, start);// 3. 批量存储statsService.saveBatch(statsList);// 4. 区域级统计saveAreaStatisticsDaily(statsList, start);
}

优化效果
数据量减少:假设原始数据10万条 → 聚合后100条区域数据

执行时间:从1200ms → 200ms

内存消耗:从800MB → 10MB

二、批量处理优化

  1. 批量插入代替逐条插入
// 原代码(逐条插入)
areaMap.forEach((areaId, areaList) -> {// ...构建postatsService.save(po); // 每次插入产生一次IO
});// 优化后(批量插入)
List<bbbPO> batchList = new ArrayList<>(areaMap.size());
areaMap.forEach((areaId, areaList) -> {// ...构建pobatchList.add(po);
});
statsService.saveBatch(batchList); // 一次批量插入
  1. 消除冗余流操作
// 原代码(两次遍历)
Map<String, List<AAA>> areaMap = list.stream().collect(groupingBy(...));
areaMap.forEach(...);// 优化后(合并处理)
list.stream().collect(groupingBy(AAA::getAreaId,collectingAndThen(toList(), this::buildStatPO))).values().forEach(...);

四、区域特殊处理解耦

  1. 定义区域配置策略
public enum SpecialArea {TUNNEL_1669("1669", "rightOfCrossTunnel"),TUNNEL_1670("1670", "leftOfCrossTunnel");private final String areaId;private final String fieldName;// 静态映射表private static final Map<String, SpecialArea> ID_MAP = Arrays.stream(values()).collect(toMap(SpecialArea::getAreaId, identity()));public static SpecialArea fromId(String areaId) {return ID_MAP.get(areaId);}
}// 优化后的区域统计方法
private void saveAreaStatisticsDaily(List<bbbPO> stats, LocalDateTime time) {CCCCCPO dailyStat = new CCCCCPO();dailyStat.setCrossTime(time);stats.forEach(po -> {SpecialArea area = SpecialArea.fromId(po.getAreaId());if (area != null) {BeanUtils.setProperty(dailyStat, area.getFieldName(), po.getFlow());}});dailyStat.setFlow(stats.stream().mapToInt(bbbPO::getFlow).sum());SERVICE1.save(dailyStat);
}

五、防御性编程增强

  1. 空值安全处理
// 平均速度计算优化
BigDecimal meanSpeed = areaList.stream().map(AAA::getCarSpeed).filter(Objects::nonNull).collect(Collectors.collectingAndThen(Collectors.averagingDouble(Double::doubleValue),avg -> avg.isNaN() ? BigDecimal.ZERO : BigDecimal.valueOf(avg)));
  1. 并行流安全控制
// 明确指定自定义线程池
ForkJoinPool customPool = new ForkJoinPool(4);
try {customPool.submit(() -> areaList.parallelStream()// ...处理逻辑).get();
} finally {customPool.shutdown();
}

在这里插入图片描述

相关文章:

浅论数据库聚合:合理使用LambdaQueryWrapper和XML

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、数据库聚合替代内存计算&#xff08;关键优化&#xff09;二、批量处理优化四、区域特殊处理解耦五、防御性编程增强 前言 技术认知点&#xff1a;使用 XM…...

FastGPT 引申:混合检索完整实例

文章目录 FastGPT 引申&#xff1a;混合检索完整实例1. 各检索方式的初始结果2. RRF合并过程3. 合并后的结果4. Rerank重排序后5. 最终RRF合并6. 内容总结 FastGPT 引申&#xff1a;混合检索完整实例 下边通过一个简单的例子说明不同检索方式的分值变化过程&#xff0c;假设我…...

Socket.IO聊天室

项目代码 https://github.com/R-K05/Socket.IO- 创建项目 服务端项目和客户端项目 安装Socket依赖 服务端 npm i socket.io 客户端 npm i socket.io-client 客户端添加聊天页面 源码 服务端 app.js const express require("express") const app express()co…...

MySQL表中数据基本操作

1.表中数据的插入&#xff1a; 1.insert insert [into] table_name [(column [,column]...)] values (value_list) [,(value_list)] ... 创建一张学生表&#xff1a; 1.1单行指定列插入&#xff1a; insert into student (name,qq) values (‘张三’,’1234455’); values左…...

可狱可囚的爬虫系列课程 16:爬虫重试机制

一、retrying模块简介 在爬虫中&#xff0c;因为我们是在线爬取内容&#xff0c;所以可能会因为网络、服务器等原因导致报错&#xff0c;那么这类错误出现以后&#xff0c;我们想要做的肯定是在报错处进行重试操作&#xff0c;Python提供了一个很好的模块&#xff0c;能够直接帮…...

第十五届蓝桥杯----B组cpp----真题解析(小白版本)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 必看前言&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;一、试题A&#xff1a;握手问题1.题意分析2.代码解答 二、试题B&#xff1a;小球反弹1.题意…...

软考架构师笔记-数据库系统

1.7 数据库系统 三级模式-两级映射 三级模式 外模式&#xff1a;用户视图概念模式&#xff1a;只涉及描述内模式&#xff1a;存储方式的描述 两级映射 外模式-概念模式映射概念模式-内模式映射 数据库的设计 步骤 需求分析 输出为需求分析、数据流图(Data FLow Diagram-DF…...

Spring AI 1.0.0-M6 快速开始(一)

Spring AI 1.0.0-M6 入门一、存储库二、依赖管理完整maven 入门 Spring 是JAVA中我们经常使用的框架之一&#xff0c;Spring AI不断的发展迭代目前已经到M6版本据说上半年会出一个稳定版本。 本节提供了如何开始使用Spring AI的M6。 一、存储库 1.0 M6 -添加Spring存储库 需…...

go 分布式redis锁的实现方式

go 语言以高并发著称。那么在实际的项目中 经常会用到锁的情况。比如说秒杀抢购等等场景。下面主要介绍 redis 布式锁实现的两种高并发抢购场景。其实 高并发 和 分布式锁 是一个互斥的两个状态&#xff1a; 方式一 setNX&#xff1a; 使用 redis自带的API setNX 来实现。能解决…...

Unity中Stack<T>用法以及删除Stack<GameObject>的方法

Unity中Stack用法以及删除Stack的方法 介绍Stack<T>的APIStack<T> 常用方法创建和初始化 Stack<T>Push 和 Pop 操作Stack<T>遍历清空栈检查栈是否包含某个元素 栈的典型应用场景撤销操作深度优先搜索&#xff08;DFS&#xff09;注意事项 总结 介绍 因…...

Vue进阶之Vue3源码解析(二)

Vue3源码解析 运行runtime-coresrc/createApp.tssrc/vnode.ts.tssrc/renderer.ts runtime-domsrc/index.ts 总结 运行 runtime-core src/createApp.ts vue的创建入口 import { createVNode } from "./vnode";export function createAppAPI(render) {return funct…...

linux的文件系统及文件类型

目录 一、Linux支持的文件系统 二、linux的文件类型 2.1、普通文件 2.2、目录文件 2.3、链接文件 2.4、字符设备文件: 2.5、块设备文件 2.6、套接字文件 2.7、管道文件 三、linux的文件属性 3.1、关于权限部分 四、Linux的文件结构 五、用户主目录 5.1、工作目录…...

如何下载安装 PyCharm?

李升伟 整理 一、下载 PyCharm 访问官网 打开 PyCharm 官网&#xff0c;点击 "Download" 按钮25。 版本选择&#xff1a; 社区版&#xff08;Community&#xff09;&#xff1a;免费使用&#xff0c;适合个人学习和基础开发。 专业版&#xff08;Professional&#…...

3D空间曲线批量散点化软件V1.0正式发布,将空间线条导出坐标点,SolidWorks/UG/Catia等三维软件通用

软件下载地址&#xff1a; SolidWorks/UG/Catia等三维软件通用&#xff0c;3D空间曲线批量散点化软件V1.0正式发布&#xff0c;将空间线条导出坐标点 - 陶小桃Blog在三维设计领域&#xff0c;工程师常需将复杂空间曲线转化为离散坐标点以用于逆向工程、有限元分析、数控加工或…...

WPS AI+office-ai的安装、使用

** 说明&#xff1a;WPS AI和OfficeAI是两个独立的AI助手&#xff0c;下面分别简单讲下如何使用 ** WPS AI WPS AI是WPS自带AI工具 打开新版WPS&#xff0c;新建文档后就可以看到菜单栏多了一个“WPS AI”菜单&#xff0c;点击该菜单&#xff0c;发现下方出现很多菜单&#xf…...

java后端开发day27--常用API(二)正则表达式爬虫

&#xff08;以下内容全部来自上述课程&#xff09; 1.正则表达式&#xff08;regex&#xff09; 可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 1.作用 校验字符串是否满足规则在一段文本中查找满足要求的内容 2.内容定义 ps&#xff1a;一…...

拼电商客户管理系统

内容来自&#xff1a;尚硅谷 难度&#xff1a;easy 目 标 l 模拟实现一个基于文本界面的 《 拼电商客户管理系统 》 l 进一步掌握编程技巧和调试技巧&#xff0c;熟悉面向对象编程 l 主要涉及以下知识点&#xff1a; 类结构的使用&#xff1a;属性、方法及构造器 对象的创建与…...

华为:Wireshark的OSPF抓包分析过程

一、OSPF 的5包7状态 5个数据包 1.Hello&#xff1a;发现、建立邻居&#xff08;邻接&#xff09;关系、维持、周期保活&#xff1b;存在全网唯一的RID&#xff0c;使用IP地址表示 2.DBD&#xff1a;本地的数据库的目录&#xff08;摘要&#xff09;&#xff0c;LSDB的目录&…...

Android项目优化同步速度

最近项目需要使用ffmpeg&#xff0c;需要gradle配置引入ffmpeg库&#xff0c;发现原来通过google官方的代码仓&#xff0c;下载太慢了&#xff0c;每秒KB级别的速度。&#xff08;之前下gradle/gradle plugin都不至于这么慢&#xff09;&#xff0c;于是想到配置国内镜像源来提…...

在线教育网站项目第二步 :学习roncoo-education,服务器为ubuntu22.04.05

一、说明 前端技术体系&#xff1a;Vue3 Nuxt3 Vite5 Vue-Router Element-Plus Pinia Axios 后端技术体系&#xff1a;Spring Cloud Alibaba2021 MySQL8 Nacos Seata Mybatis Druid redis 后端系统&#xff1a;roncoo-education&#xff08;核心框架&#xff1a;S…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...