当前位置: 首页 > news >正文

YOLOv8 自定义目标检测

一、引言

YOLOv8 不仅支持预训练模型的推理,还允许用户将其应用于自定义对象检测。本文将详细介绍如何使用 YOLOv8 训练一个新的模型,并在自定义数据集上进行对象检测。

二、数据集准备

1. 数据集格式

YOLOv8 支持多种数据集格式,包括 COCO 和 VOC 等。实际上,我们可以将自己的数据集统一到 YOLO 格式,自定义数据集可以使用的范围更加广泛,同样需要保证数据集的图片数量和质量,泛化能力才更强。它的结构如下:

datasets/custom_training/
├── data/
│   ├── train/
│   │   ├── images/
│   │   └── labels/
│   └── valid/
│       ├── images/
│       └── labels/
└── dataset.yaml

2. dataset.yaml 文件配置

path: datasets/custom_training  # 根目录
train: data/train  # 训练数据目录
val: data/valid  # 测试数据目录
nc: 1  # 目标类别数量
names: ['custom_object']  # 目标类别名称

三、模型训练

1. 训练参数详解

  • task: 推理任务类型,如 detect(目标检测)、segment(分割)、classify(分类)
  • mode: YOLO 模式,如 train(训练)、val(校验)、predict(推理)、export(导出)
  • model: 模型文件路径
  • data: 数据集配置文件
  • epochs: 训练轮数
  • batch: 批量大小
  • imgsz: 输入图像尺寸
  • save: 是否保存训练结果
  • device: 使用的设备,如 cudacpu

2. 训练命令

yolo task=detect mode=train model=yolov8n.pt epochs=100 batch=16 data=dataset.yaml

四、模型推理

1. 推理命令

yolo predict model=custom_best.pt source=test_image.jpg save=True

2. 推理结果显示

模型在推理过程中将在给定的图像上选框出目标,并添加标注,测试结果如下:

五、模型优化

为了达到最佳效果,可以采用如下方法:

1. 调整训练参数

试试不同的 batch_sizeimgszlr(学习率)等,规模不同配置对模型结果的影响。

2. 增加数据扩展

使用图像模拟技术,如旋转、缩放、位移等,增加数据集的多样性,提升模型对于不同场景的适应能力。

3. 采用更高级模型

根据任务需求,可考虑使用 yolov8m.ptyolov8l.ptyolov8x.pt 等更高级模型,以提升出为效果。

六、总结

通过本文的介绍,读者可以了解如何使用 YOLOv8 训练自定义对象检测模型。YOLOv8 具备高效性和出色的出为结果,是目标检测领域的最佳选择之一。

相关文章:

YOLOv8 自定义目标检测

一、引言 YOLOv8 不仅支持预训练模型的推理,还允许用户将其应用于自定义对象检测。本文将详细介绍如何使用 YOLOv8 训练一个新的模型,并在自定义数据集上进行对象检测。 二、数据集准备 1. 数据集格式 YOLOv8 支持多种数据集格式,包括 CO…...

抓包分析工具介绍

什么是抓包分析工具? 抓包分析工具,也称为网络数据包嗅探器或协议分析器,用于捕获和检查网络上传输的数据包。这些数据包包含了网络通信的详细信息,例如请求的资源、服务器的响应、HTTP 头信息、传输的数据内容等等。通过分析这些…...

计算机毕业设计SpringBoot+Vue.js爱心捐赠项目推荐系统 慈善大数据(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Python----数据分析(Matplotlib四:Figure的用法,创建Figure对象,常用的Figure对象的方法)

一、Figure的用法 在 Matplotlib 中, Figure对象是整个绘图的顶级容器,它是所有绘图元素的基础, 提供了一个用于绘制图形的画布空间。 在 Matplotlib 中, Axes对象是进行数据绘制和设置坐标轴等操作的核心区域,它与 Fi…...

CameraX学习2-关于录像、慢动作录像

CameraX实现录像 首先在起预览时就要配置录像usecase,对于cameraX来说就是绑定录像usecase到lifecycle。如下。 1,创建Recorder对象,是与 VideoCapture 紧密耦合的 VideoOutput 实现。Recorder可以用来配置录像的分辨率、比例等,还…...

Java链接redis

一、准备工作就像谈恋爱 首先咱们得来点仪式感是不是&#xff1f;打开你的Maven&#xff08;Gradle玩家别打我&#xff09;&#xff0c;把这两个宝贝依赖给我焊死在pom.xml里&#xff1a; <!-- 经典永不过时的Jedis --> <dependency> <groupId>redis.cli…...

2025最新群智能优化算法:基于RRT的优化器(RRT-based Optimizer,RRTO)求解23个经典函数测试集,MATLAB

一、基于RRT的优化器 基于RRT的优化器&#xff08;RRT-based Optimizer&#xff0c;RRTO&#xff09;是2025年提出的一种新型元启发式算法。其受常用于机器人路径规划的快速探索随机树&#xff08;RRT&#xff09;算法的搜索机制启发&#xff0c;首次将RRT算法的概念与元启发式…...

VBA 数据库同一表的当前行与其他行的主键重复判断实现方案

目的&#xff0c;判断是否主键重复&#xff0c;不重复则登录新数据&#xff0c;重复则不登录。 定义类型&#xff1a; DataRecord   tableName 表名   rowNumber 行号   columnName 列名   data 数据 想要实现的代码逻辑如下&#xff1a; 模拟数据库的登录过程。假设…...

DeepSeek开启AI办公新模式,WPS/Office集成DeepSeek-R1本地大模型!

从央视到地方媒体&#xff0c;已有多家媒体机构推出AI主播&#xff0c;最近杭州文化广播电视集团的《杭州新闻联播》节目&#xff0c;使用AI主持人进行新闻播报&#xff0c;且做到了0失误率&#xff0c;可见AI正在逐渐取代部分行业和一些重复性的工作&#xff0c;这一现象引发很…...

android为第三方提供部分系统接口

文章目录 Settings - 亮灭屏Settings - 恢复出厂设置Settings - 数字锁屏/解锁Settings - 设置系统时间PackageInstaller - 安装/卸载第三方应用摘要:本文对系统模块进行改造,提供广播等形式的接口对外提供无法直接调用的系统级别接口,实现部分功能的集合。如果是广播形式,…...

Android 自定义View 加 lifecycle 简单使用

前言 本文是自定义view中最简单的使用方法&#xff0c;分别进行 ‘onMeasure’、‘onDraw’、‘自定义样式’、‘lifecycle’的简单使用&#xff0c;了解自定义view的使用。 通过lifecycle来控制 动画的状态 一、onMeasure做了什么&#xff1f; 在onMeasure中获取view 的宽和…...

在K8S中,svc底层是如何实现的?

在Kubernetes中&#xff0c;Service是集群内部的一个抽象层&#xff0c;用于定义一组Pod的逻辑分组&#xff0c;并提供统一的访问入口点&#xff0c;同时还可以对这些Pod提供负载均衡和网络代理功能。Service底层的实现主要包括以下几个关键组件和技术&#xff1a; 标签选择器…...

Python pyqt小技巧:默认打开某文件(即自动加载某文件)

文章目录 前言 前言 有的时候需要界面自动加载某文件。不需要人为在打开选择。 import os #自带 import sys # 获取该程序当前文件目录dir_name os.path.dirname(os.path.realpath(sys.argv[0])) f1 os.path.join(dir_name, 题目调度规程.xls) # 拼接路径 文件必须和程序在…...

vue2实现组件库的自动按需引入,unplugin-auto-import,unplugin-vue-components

1.使用ant-design-vue或者element-ui时&#xff0c;如何每个组件都去import导入组件&#xff0c;大大降低了开发效率&#xff0c;如果全局一次性注册会增加项目体积&#xff0c;那么如何实现既不局部引入&#xff0c;也不全局注册&#xff1f; 2.在element-plus官网看到有说明…...

C++第十节:map和set的介绍与使用

【本节要点】 1.关联式容器2.键值对3.map介绍与使用4.set介绍与使用5.multimap与multisedd的介绍与使用 一、关联式容器&#xff1a;数据管理的核心利器 关联式容器是STL中用于高效存储和检索键值对&#xff08;key-value pair&#xff09;的数据结构&#xff0c;其底层基于红黑…...

线性代数笔记28--奇异值分解(SVD)

1. 奇异值分解 假设矩阵 A A A有 m m m行 n n n列 奇异值分解就是在 A A A的行向量上选取若干对标准正交基&#xff0c;对它作 A A A矩阵变化并投射到了 A A A的列空间上的正交基的若干倍数。 A v → u → σ u → ∈ R m v → ∈ R n A\overrightarrow{v}\overrightarrow{u…...

【从零开始学习计算机科学】硬件设计与FPGA原理

硬件设计 硬件设计流程 在设计硬件电路之前,首先要把大的框架和架构要搞清楚,这要求我们搞清楚要实现什么功能,然后找找有否能实现同样或相似功能的参考电路板(要懂得尽量利用他人的成果,越是有经验的工程师越会懂得借鉴他人的成果)。如果你找到了的参考设计,最好还是…...

项目中同时使用Redis(lettuce)和Redisson的报错

温馨提示&#xff1a;图片有点小&#xff0c;可以放大页面进行查看... 问题1&#xff1a;版本冲突 直接上图&#xff0c;这个错表示依赖版本不匹配问题&#xff0c;我本地SpringBoot用的是2.7&#xff0c;但是Redisson版本用的3.32.5。 我们通过点击 artifactId跟进去 发现它…...

leetcode-数组

26. 删除有序数组中的重复项 已解答 简单 相关标签 相关企业 提示 给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 n…...

人工智能里的深度学习指的是什么?

深度学习&#xff08;Deep Learning, 简称DL&#xff09;是机器学习领域的一个重要分支&#xff0c;它通过构建和训练深层神经网络模型&#xff0c;从大量数据中自动学习和提取特征&#xff0c;以实现复杂任务的自动化处理和决策。以下是关于深度学习的详细介绍&#xff1a; 一…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

核心速览 研究背景 ​​研究问题​​&#xff1a;这篇文章要解决的问题是当前大型语言模型&#xff08;LLMs&#xff09;在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色&#xff0c;但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成&#xff08;RA…...

【题解-洛谷】P10480 可达性统计

题目&#xff1a;P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图&#xff0c;分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M&#xff0c;接下来 M M M 行每行两个整数 x , y x,y x,y&#xff0c;表示从 …...