当前位置: 首页 > news >正文

Codeforces Round 258 (Div. 2) E. Devu and Flowers 生成函数

题目链接

题目大意

n n n ( 1 ≤ n ≤ 20 ) (1\leq n \leq 20) (1n20) 个花瓶,第 i i i 个花瓶里有 f i f_i fi ( 1 ≤ f i ≤ 1 0 12 ) (1\leq f_i \leq 10^{12}) (1fi1012) 朵花。现在要选择 s s s ( 1 ≤ s ≤ 1 0 14 ) (1\leq s \leq 10^{14}) (1s1014)朵花。

求出有多少种方案。两种方案不同当且仅当两种方案中至少有一个花瓶选择花的数量不同,答案对 1 0 9 + 7 10^9+7 109+7 取模。

思路

取第 i i i 种花的生成函数可以表示为 : f i ( x ) = f_i(x)= fi(x)= 1 + x + x 2 + x 3 + ⋅ ⋅ ⋅ x f i 1+x+x^2+x^3+ \cdot \cdot \cdot x^{f_i} 1+x+x2+x3+xfi.

则选取方案的生成函数可以表示为 : G ( x ) = G(x)= G(x)= f 1 ( x ) ⋅ f 2 ( x ) ⋅ ⋅ ⋅ f n ( x ) = f_1(x) \cdot f_2(x) \cdot \cdot \cdot f_n(x) = f1(x)f2(x)fn(x)= ( 1 − x f 1 + 1 ) ( 1 − x f 2 + 1 ) ( 1 − x f 3 + 1 ) ⋅ ⋅ ⋅ ( 1 − x f n + 1 ) ( 1 − x ) n \frac {(1-x^{f_1+1})(1-x^{f_2+1})(1-x^{f_3+1}) \cdot \cdot \cdot (1-x^{f_n+1})} {(1-x)^n} (1x)n(1xf1+1)(1xf2+1)(1xf3+1)⋅⋅⋅(1xfn+1) = = = ∏ i = 1 n ( 1 − x f i + 1 ) ( 1 − x ) n \frac {\prod_{i=1}^{n}(1-x^{f_i+1})}{(1-x)^{n}} (1x)ni=1n(1xfi+1) = = = ∏ i = 1 n ( 1 − x f i + 1 ) \prod_{i=1}^{n}(1-x^{f_i+1}) i=1n(1xfi+1) ⋅ \cdot ∑ i = 0 ∞ \sum_{i=0}^\infty i=0 ( i + n − 1 i ) {i+n-1\choose i} (ii+n1) x i x_i xi = = = ∏ i = 1 n ( 1 − x f i + 1 ) \prod_{i=1}^{n}(1-x^{f_i+1}) i=1n(1xfi+1) ⋅ \cdot ∑ i = 0 ∞ \sum_{i=0}^\infty i=0 ( i + n − 1 n − 1 ) {i+n-1\choose n-1} (n1i+n1) x i x_i xi .

[ x s ] G ( x ) [x^s]G(x) [xs]G(x)即为所求的答案。

A ( x ) = ∏ i = 1 n ( 1 − x f i + 1 ) A(x)=\prod_{i=1}^{n}(1-x^{f_i+1}) A(x)=i=1n(1xfi+1), B ( x ) = ∑ i = 0 ∞ B(x)=\sum_{i=0}^\infty B(x)=i=0 ( i + n − 1 n − 1 ) x i {i+n-1\choose n-1} x_i (n1i+n1)xi.

由于 n ≤ 20 n\leq20 n20 , 所以 A ( x ) A(x) A(x) 最多只有 2 20 2^{20} 220 项,可以直接枚举,即 a n s = [ x s ] G ( x ) = ∑ i = 0 2 n [ x i ] A ( x ) ⋅ [ x s − i ] B ( x ) = ans=[x^s]G(x)=\sum_{i=0}^{2^n}[x^i]A(x) \cdot [x^{s-i}]B(x)= ans=[xs]G(x)=i=02n[xi]A(x)[xsi]B(x)= ∑ i = 0 2 n [ x i ] A ( x ) ⋅ ( s − i + n − 1 n − 1 ) \sum_{i=0}^{2^n}[x^i]A(x) \cdot {s-i+n-1\choose n-1} i=02n[xi]A(x)(n1si+n1),由于 n n n 很小可以暴力计算组合数,总的时间复杂度为 O ( n ⋅ 2 n ) O(n \cdot 2^n) O(n2n).

code

#include <bits/stdc++.h>
#define int long long
#define ll long long
#define pii pair<int, int>using namespace std;
const int mod = 1e9 + 7;
int f[30];int ksm(int x, int k)
{int res = 1;while (k > 0){if (k & 1)res = res * x % mod;x = x * x % mod;k >>= 1;}return res;
}signed main()
{ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, s;cin >> n >> s;int fac = 1;for (int i = 1; i <= n; ++i){cin >> f[i - 1];if (i < n)fac = fac * i % mod;}int infac = ksm(fac, mod - 2);int ans = 0;for (int i = 0; i < (1ll << n); ++i){int cnt = 0, sum = 0;for (int j = 0; j < n; ++j){if ((1ll << j) & i)cnt++, sum += f[j] + 1;}if (sum > s)continue;int tmp = 1;for (int j = 0; j < n - 1; ++j){int p = (s - sum + n - 1 - j) % mod;tmp = tmp * p % mod;}tmp = tmp * infac % mod;ans = (ans + ((cnt & 1) ? mod - tmp : tmp) % mod) % mod;}cout << (ans + mod) % mod << '\n';return 0;
}

相关文章:

Codeforces Round 258 (Div. 2) E. Devu and Flowers 生成函数

题目链接 题目大意 有 n n n ( 1 ≤ n ≤ 20 ) (1\leq n \leq 20) (1≤n≤20) 个花瓶&#xff0c;第 i i i 个花瓶里有 f i f_i fi​ ( 1 ≤ f i ≤ 1 0 12 ) (1\leq f_i \leq 10^{12}) (1≤fi​≤1012) 朵花。现在要选择 s s s ( 1 ≤ s ≤ 1 0 14 ) (1\leq s \leq 1…...

【高并发内存池】释放内存 + 申请和释放总结

高并发内存池 1. 释放内存1.1 thread cache1.2 central cache1.3 page cache 2. 申请和释放剩余补充 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&#x…...

AutoGen学习笔记系列(九)Advanced - Selector Group Chat

这篇文章瞄的是AutoGen官方教学文档 Advanced 章节中的 Selector Group Chat 篇章&#xff0c;介绍了SelectorGroupChat对象如何从一个Team中选择其中一个Agent与LLM进行对话&#xff0c;并且在得到结果后进行二次规划&#xff0c;同时你也可以自定义选择函数。本质上还是对Tea…...

Stream特性(踩坑):惰性执行、不修改原始数据源

在日常开发中&#xff0c;Stream API 提供了一种高效且易于使用的工具集来处理集合数据。 本文主要讲解 Stream 的两个特性&#xff1a;惰性执行&#xff0c;不修改原始数据源。 为什么说这两个、而不讲下其他的特性呢&#xff1f;主要是因为在开发中如果忽略这两个特性的话&…...

springcloud sentinel教程

‌QPS&#xff08;Queries Per Second&#xff09;即每秒查询率 TPS&#xff0c;每秒处理的事务数目 PV&#xff08;page view&#xff09;即页面浏览量 UV 访问数&#xff08;Unique Visitor&#xff09;指独立访客访问数 一、初识Sentinel 什么是雪崩问题? 微服务之间相…...

像素的一生 Life of a Pixel - Steve Kobes 2020版

像素的一生 Life of a Pixel - Steve Kobes 2020版 《Life of a Pixel》 作者是Google大佬 Steve Kobes 2020年 介绍Chromium内核完整渲染流程的视频&#xff0c;介绍的非常好&#xff0c;想要学习了解chromium内核渲染必看&#xff01; 油管视频地址为&#xff1a;https://w…...

系统部署【信创名录】及其查询地址

一、信创类型 &#xff08;一&#xff09;服务器&#xff1a; 1.华为云 2.腾讯云 3.阿里云 &#xff08;二&#xff09;中央处理器&#xff08;CPU&#xff09;&#xff1a; 1.海思&#xff0c;鲲鹏920服务器 &#xff08;三&#xff09;中间件 1.人大金仓 &#xff0…...

VSCode 配置优化指南:打造高效的 uni-app、Vue2/3、JS/TS 开发环境

VSCode 配置优化指南,适用于 uni-app、Vue2、Vue3、JavaScript、TypeScript 开发,包括插件推荐、设置优化、代码片段、调试配置等,确保你的开发体验更加流畅高效。 1. 安装 VSCode 如果你还未安装 VSCode,可前往 VSCode 官网 下载最新版并安装。 2. 安装推荐插件 (1) Vue…...

C++中的析构函数

目录 一、什么是析构函数&#xff1a; 二、析构函数的特性&#xff1a; 一、什么是析构函数&#xff1a; C中的析构函数非常简单&#xff0c;它的功能无非是帮助我们自动归还堆区的空间给操作系统。当我们使用内存开辟函数&#xff08;如malloc()、realloc()&#xff09;等&a…...

同步,异步,并发,并行

同步: 任务按顺序执行&#xff0c;必须等待前一个任务完成后才能开始下一个任务。 任务之间是强依赖的&#xff0c;通过直接调用或阻塞等待实现。 示例&#xff1a;读取文件时&#xff0c;代码会阻塞直到文件读取完成。 异步&#xff1a; 任务无需等待前一个任务完成即可启…...

种子填充(Floodfill、泛滥填充、洪水填充) 算法c++模板

种子填充(Floodfill) 算法: 从任意 W 开始,不停地把邻接的 W 用 . 代替。1 次 DFS 后与初始 W 连接的所有 W 都被替换成 . 了。 因此,直到图中不存在 W 为止,总共进行 DFS 的次数就是答案了。 问题: 有一个大小为 N x M 的园子,雨后积水。 8 连通的积水被认为是连接在…...

MATLAB控制函数测试要点剖析

一、功能准确性检验 基础功能核验 针对常用控制函数&#xff0c;像用于传递函数建模的 tf 、构建状态空间模型的 ss &#xff0c;以及开展阶跃响应分析的 step 等&#xff0c;必须确认其能精准执行基础操作。以 tf 函数为例&#xff0c;在输入分子与分母系数后&#xff0c;理…...

【新手指南】pyqt可视化远程部署deepseek7B蒸馏版模型

本地效果&#xff1a;&#xff08;如果想做这个的本科毕设&#xff0c;建议美化界面。&#xff09; 总结&#xff1a;MobaXterm远程连接autodl服务器&#xff0c;在MobaXterm上利用X11转发使pyqt可视化页面在自己的电脑上展现出来。 1. 官网下载MobaXterm MobaXterm free Xse…...

大语言模型在患者交互任务中的临床使用评估框架

An evaluation framework for clinical use of large language models in patient interaction tasks An evaluation framework for clinical use of large language models in patient interaction tasks | Nature Medicine 2025.1 收到时间&#xff1a;2023 年 8 月 8 日 …...

DeepSeek-V3 技术报告解读

DeepSeek火了有一段时间了&#xff0c;春节假期因为没时间&#xff0c;所以关于deepseek大模型一系列的技术报告一直没看&#xff0c;新年开工后&#xff0c;抽一点时间把之前的坑补起来&#xff0c;关于DeepSeek-V3技术报告的解读已经有很多了&#xff0c;但我相信不同的人去读…...

suricata安装测试

系统版本为Ubuntu 22.04.4。 # cat /etc/issue Ubuntu 22.04.4 LTS \n \l # # uname -a Linux logging 6.8.0-49-generic #49~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Nov 6 17:42:15 UTC 2 x86_64 x86_64 x86_64 GNU/Linux添加suricata的apt库。 # add-apt-repository pp…...

Java反射简单理解

Java反射是指在运行时&#xff08;runtime&#xff09;能够动态地获取类的内部信息&#xff0c;并能直接操作类的属性和方法的一种机制。通过反射&#xff0c;开发者可以在运行时检查类、接口、字段和方法&#xff0c;并且可以调用这些方法和访问这些字段&#xff0c;而无需在编…...

WPS Word中英文混杂空格和行间距不一致调整方案

文章目录 问题1&#xff1a;在两端对齐的情况下&#xff0c;如何删除参考文献&#xff08;英文&#xff09;的空格问题2&#xff1a;中英文混杂行间距不一致问题问题3&#xff1a;设置中文为固定字体&#xff0c;设置西文为固定字体参考 问题1&#xff1a;在两端对齐的情况下&a…...

探秘沃尔什-哈达玛变换(WHT)原理

沃尔什-哈达玛变换&#xff08;WHT&#xff09;起源 起源与命名&#xff08;20世纪早期&#xff09; 数学基础&#xff1a;该变换的理论基础由法国数学家雅克哈达玛&#xff08;Jacques Hadamard&#xff09;在1893年提出&#xff0c;其核心是哈达玛矩阵的构造。扩展与命名&…...

优雅拼接字符串:StringJoiner 的完整指南

在Java开发中&#xff0c;字符串拼接是高频操作。无论是日志格式化、构建CSV数据&#xff0c;还是生成动态SQL&#xff0c;开发者常需处理分隔符、前缀和后缀的组合。传统的StringBuilder虽然灵活&#xff0c;但代码冗余且易出错。Java 8推出的StringJoiner类&#xff0c;以简洁…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...

Pandas 可视化集成:数据科学家的高效绘图指南

为什么选择 Pandas 进行数据可视化&#xff1f; 在数据科学和分析领域&#xff0c;可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具&#xff0c;如 Matplotlib、Seaborn、Plotly 等&#xff0c;但 Pandas 内置的可视化功能因其与数据结…...