当前位置: 首页 > news >正文

LeetCode Hot100刷题——反转链表(迭代+递归)

206.反转链表

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

示例 1:

输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]

示例 2:

输入:head = [1,2]
输出:[2,1]

示例 3:

输入:head = []
输出:[]

提示:

  • 链表中节点的数目范围是 [0, 5000]
  • -5000 <= Node.val <= 5000

反转链表通常有两种方法:迭代法和递归法。

迭代法(双指针)

        假设原来的链表是1->2->3->4->5->null,反转后变成null<-1<-2<-3<-4<-5。那在迭代的时候,初始状态应该是prev=null,current=head。然后循环处理每个节点:                        

        在循环中,首先保存当前节点的下一个节点nextTemp,然后把当前节点的next指向prev。接着prev移动到current的位置,current移动到nextTemp的位置。直到current为null,此时prev就是新的头节点。

实现代码:

/*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val = val; }* ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseList(ListNode head) {ListNode current = head;ListNode prev = null;while (current != null) {ListNode nextTemp = current.next; // 保存下一个节点current.next = prev; /// 反转指针prev = current; // 前移prevcurrent = nextTemp; // 前移current}return prev; // prev即为新链表的头结点}
}

步骤解释:

  1. 初始化指针:使用两个指针prevcurrent,初始时prevnullcurrent指向头节点head

  2. 遍历链表:在current不为null时循环处理每个节点。

    • 保存下一个节点:临时存储current.nextnextTemp,防止反转指针后丢失后续节点。

    • 反转指针:将当前节点currentnext指向prev,完成当前节点的反转。

    • 移动指针:将prev移动到当前current的位置,current移动到之前保存的nextTemp位置。

  3. 返回新头节点:当循环结束时,currentnullprev指向原链表的最后一个节点,即反转后的新头节点。

递归法

递归方法的步骤如下:

  1. 递归终止条件:当前节点为空或下一个子节点为空,返回当前节点
  2. 递归反转后续链表,得到反转后的头结点
  3. 将当前节点的下一个节点的next指向当前节点,形成反转
  4. 将当前节点的next设为null,断开原来的连接
  5. 返回反转后的头结点

实现代码

class Solution {public ListNode reverseList(ListNode head) {// 递归法// 递归终止条件,空链表或单链表无需反转if (head == null || head.next == null) {return head;}// 递归反转后续链表,得到新头结点ListNode newHead = reverseList(head.next);// 调整指针方向,将当前节点的下一个节点的next指向自己head.next.next = head;// 断开当前节点的原指向,防止循环head.next = null;// 返回新头结点return newHead;}
}

示例分析

1. 递归调用栈展开

递归从头部节点 1 开始,逐层深入,直到链表末尾的节点 5。以下是调用栈的展开过程:

reverseList(1) → reverseList(2) → reverseList(3) → reverseList(4) → reverseList(5)

终止条件触发:当调用 reverseList(5) 时,5.next == null,直接返回 5(此时 newHead = 5)。

2. 递归回溯与指针调整

递归开始逐层回溯,每层处理当前节点并调整指针方向:

层 4(head = 4

  • 输入链表状态4 → 5

  • 操作步骤

    1. 收到下层返回的 newHead = 5

    2. 调整指针4.next.next = 4 → 5.next = 4(形成 5 → 4)。

    3. 断开原链4.next = null(防止 4 → 5 循环)。

  • 输出链表状态5 → 4 → null

  • 返回newHead = 5

层 3(head = 3

  • 输入链表状态3 → 4 → null(原链未修改时,3.next 仍指向 4)。

  • 操作步骤

    1. 收到下层返回的 newHead = 5

    2. 调整指针3.next.next = 3 → 4.next = 3(形成 5 → 4 → 3)。

    3. 断开原链3.next = null

  • 输出链表状态5 → 4 → 3 → null

  • 返回newHead = 5

层 2(head = 2

  • 输入链表状态2 → 3 → null(原链未修改时,2.next 指向 3)。

  • 操作步骤

    1. 收到下层返回的 newHead = 5

    2. 调整指针2.next.next = 2 → 3.next = 2(形成 5 → 4 → 3 → 2)。

    3. 断开原链2.next = null

  • 输出链表状态5 → 4 → 3 → 2 → null

  • 返回newHead = 5

层 1(head = 1

  • 输入链表状态1 → 2 → null(原链未修改时,1.next 指向 2)。

  • 操作步骤

    1. 收到下层返回的 newHead = 5

    2. 调整指针1.next.next = 1 → 2.next = 1(形成 5 → 4 → 3 → 2 → 1)。

    3. 断开原链1.next = null

  • 输出链表状态5 → 4 → 3 → 2 → 1 → null

  • 返回newHead = 5

总结

  1. 递归终止条件:处理到链表末尾时直接返回。

  2. 递归分解问题:假设后续链表已反转,只需调整当前节点和下一个节点的指针。

  3. 指针操作:通过 head.next.next = head 和 head.next = null 完成局部反转并断开原链。

相关文章:

LeetCode Hot100刷题——反转链表(迭代+递归)

206.反转链表 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例 3&#…...

JJJ:linux sysfs相关

文章目录 1.sysfs&#xff08;属性&#xff09;文件的创建、读、写1.1 创建流程1.2 open流程1.3 read流程 2.补充2.1 sysfs下常见目录介绍2.2 属性相关2.2.1 简介2.2.2 attribute文件的创建 2.3 sysfs目录如何创建的 1.sysfs&#xff08;属性&#xff09;文件的创建、读、写 1…...

Leetcode 刷题记录 06 —— 矩阵

本系列为笔者的 Leetcode 刷题记录&#xff0c;顺序为 Hot 100 题官方顺序&#xff0c;根据标签命名&#xff0c;记录笔者总结的做题思路&#xff0c;附部分代码解释和疑问解答。 目录 01 矩阵置零 方法一&#xff1a;标记数组 方法二&#xff1a;两个标记变量 02 螺旋矩阵…...

什么样的物联网框架适合开展共享自助KTV唱歌项目?

现在物联网的广泛应用&#xff0c;也让更多用户们看到了它的实力&#xff0c;也使得共享经济遍地开花。其中共享自助唱歌设备也备受欢迎&#xff0c;那么适合开展共享自助KTV唱歌项目的物联网框架都应具备哪些特点呢&#xff1f; 智能化与自动化管理 物联网技术在共享KTV中的应…...

【Academy】HTTP Host 标头攻击 ------ HTTP Host header attacks

HTTP Host 标头攻击 ------ HTTP Host header attacks 1. 什么是 HTTP Host 标头&#xff1f;2. 什么是 HTTP Host 标头攻击&#xff1f;3. HTTP Host 标头漏洞是如何产生的&#xff1f;4. 如何测试 HTTP Host 标头漏洞4.1 提供任意 Host 标头4.2 检查有缺陷的验证4.3 发送不明…...

Web基础:HTML快速入门

HTML基础语法 HTML&#xff08;超文本标记语言&#xff09; 是用于创建网页内容的 标记语言&#xff0c;通过定义页面的 结构和内容 来告诉浏览器如何呈现网页。 超文本&#xff08;Hypertext&#xff09; 是一种通过 链接&#xff08;Hyperlinks&#xff09; 将不同文本、图像…...

技术领域,有许多优秀的博客和网站

在技术领域&#xff0c;有许多优秀的博客和网站为开发者、工程师和技术爱好者提供了丰富的学习资源和行业动态。以下是一些常用的技术博客和网站&#xff0c;涵盖了编程、软件开发、数据科学、人工智能、网络安全等多个领域&#xff1a; 1. 综合技术博客 1.1 Medium 网址: ht…...

k8s概念及k8s集群部署(Centos7)

Centos7部署k8s集群 部署之前&#xff0c;先简单说下k8s是个啥&#xff1a; 一、k8s简介&#xff1a; k8s&#xff0c;全称&#xff1a;kubernetes&#xff0c;它可以看作是一个分布式系统支撑平台。k8s的作用&#xff1a; 1、故障自愈&#xff1a; k8s这个玩意可以监控容器…...

《DeepSeek-V3:动态温度调节算法,开启推理新境界!》

在人工智能领域不断探索的征程中&#xff0c;DeepSeek-V3以其卓越的创新技术&#xff0c;尤其是动态温度调节算法&#xff0c;成为了备受瞩目的焦点。这项算法犹如一把神奇的钥匙&#xff0c;巧妙地开启了推理速度与精度动态平衡的大门&#xff0c;为大语言模型的发展开辟了新的…...

Python从入门到精通1:FastAPI

引言 在现代 Web 开发中&#xff0c;API 是前后端分离架构的核心。FastAPI 凭借其高性能、简洁的语法和自动文档生成功能&#xff0c;成为 Python 开发者的首选框架。本文将从零开始&#xff0c;详细讲解 FastAPI 的核心概念、安装配置、路由设计、请求处理以及实际应用案例&a…...

fastapi+angular停车管理系统可跨域

说明&#xff1a; 我计划用fastapiangular做一款停车管理系统&#xff0c;支持跨域 1.设计mysql数据库表&#xff0c; 2.建表&#xff0c;添加测试数据&#xff0c;多表查询&#xff0c; 3.在fastapi写接口查询数据&#xff0c; 4.用postman测试&#xff0c; 5.在angular前端展…...

前端题目类型

HTMLCSS常见面试题 HTML标签有哪些行内元素 img、picture、span、input、textarea、select、label 说说你对元素语义化的理解 元素语义化就是用正确的元素做正确的事情。虽然理论上所有html元素都可通过css样式实现相同效果&#xff0c;但这样会使事情复杂化&#xff0c;所以需…...

openwrt路由系统------lua、uci的关系

1. Luci 的核心组成 (1) Lua 简介:Luci 的界面和逻辑几乎完全使用 Lua 脚本语言编写。Lua 是一种轻量级、高效的嵌入式脚本语言,适合在资源受限的路由器环境中运行。作用: 生成动态 Web 页面(与后端交互渲染 HTML)。处理用户提交的表单数据(如修改 Wi-Fi 密码)。调用系…...

Elastic:AI 会开始取代网络安全工作吗?

作者&#xff1a;来自 Elastic Joe DeFever 不会&#xff0c;但它正在从根本上改变这些工作。 生成式 AI (GenAI) 正迅速成为日常安全工作流程中的一个重要组成部分。那么&#xff0c;它是合作伙伴还是竞争对手&#xff1f; GenAI 技术在安全堆栈几乎每个方面的广泛应用&#…...

Linux安装升级docker

Linux 安装升级docker Linux 安装升级docker背景升级停止docker服务备份原docker数据目录移除旧版本docker安装docker ce恢复数据目录启动docker参考 安装找到docker官网找到docker文档删除旧版本docker配置docker yum源参考官网继续安装docker设置开机自启配置加速测试 Linux …...

【经验分享】Ubuntu20.04编译RK3568 AI模型报错问题(已解决)

【经验分享】Ubuntu20.04编译RK3568 AI模型报错问题&#xff08;已解决&#xff09; 前言问题现象问题分析解决方案总结 前言 这里使用的是Rockchip提供的rknn_model_zoo&#xff0c;https://github.com/airockchip/rknn_model_zoo/tree/main 此解决方案适用于Rockchip芯片在U…...

国产算力助力工业智能新范式

随着人工智能、智能制造以及边缘计算等技术趋势的发展&#xff0c;算力设备正逐渐从中心云向边缘机房乃至边缘现场下沉。在此背景下&#xff0c;以工控机为例的部署于各类边缘现场的算力设备市场&#xff0c;也正面临着新的变革。 根据IDC 2024研究报告显示&#xff1a;在能源制…...

学习笔记:利用OpenAI实现阅卷智能体

https://zhuanlan.zhihu.com/p/18047953492 ### 学习笔记&#xff1a;利用OpenAI实现阅卷智能体 #### 一、背景与需求 在各类考试中&#xff0c;选择题、判断题、填空题的阅卷相对简单&#xff0c;只需对比答案与作答是否一致。然而&#xff0c;简答题的阅卷较为复杂&#xff…...

第6届传智杯复赛第一场

A小红劈字符串 题目链接 题目链接&#xff1a;A-小红劈字符串&#xff08;B组&#xff09;_第6届传智杯复赛第一场&#xff08;补题&#xff09; (nowcoder.com) 题目描述 小红拿到了一个仅由小写字母组成的字符串&#xff0c;她希望将其分割成两个非空子串&#xff0c;使得第…...

CSDN博客:Markdown编辑语法教程总结教程(中)

❤个人主页&#xff1a;折枝寄北的博客 Markdown编辑语法教程总结 前言1. 列表1.1 无序列表1.2 有序列表1.3 待办事项列表1.4 自定义列表 2. 图片2.1 直接插入图片2.2 插入带尺寸的图片2.3 插入宽度确定&#xff0c;高度等比例的图片2.4 插入高度确定宽度等比例的图片2.5 插入居…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...