当前位置: 首页 > news >正文

深度学习与普通神经网络有何区别?

深度学习与普通神经网络的主要区别体现在以下几个方面:

一、结构复杂度

  • 普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。
  • 深度学习:强调通过5层以上的深度架构逐级抽象数据特征,包含多层神经网络,层数可能达到几十层甚至上百层。例如,ResNet(2015)包含152个卷积层。

二、特征学习方式

  • 普通神经网络:特征提取通常依赖人工设计,需要领域专家的经验。这意味着在处理新任务时,可能需要重新设计特征提取器。
  • 深度学习:具备自动特征提取能力。通过卷积核(CNN)、注意力机制(Transformer)等组件,模型能够自动从数据中学习并提取高级特征。这种方式减少了特征工程的工作量,提高了模型的泛化能力。

三、训练方式

  • 普通神经网络:通常采用反向传播算法进行训练,但由于层数较少,训练过程中较少出现梯度消失或梯度爆炸等问题。
  • 深度学习:虽然也使用反向传播算法,但由于层数较多,容易出现梯度消失或梯度爆炸等问题。为了克服这些问题,深度学习引入了逐层预训练(layer-wise pre-training)、批量归一化(Batch Normalization)、残差连接(Residual Connections)等技术,使得深层网络的训练成为可能。

四、应用场景与性能

  • 普通神经网络:适用于小规模结构化数据的处理,如信用卡欺诈检测等任务。虽然在这些任务上也能取得一定的效果,但性能可能不如深度学习模型。
  • 深度学习:在非结构化数据处理中表现突出,如医疗影像诊断(肺结节检测灵敏度达97%)、自动驾驶场景理解(目标检测精度99.5%)、机器翻译(BLEU评分超40)等领域。此外,大规模预训练模型如GPT-4(1.8万亿参数)还展现出跨任务迁移能力,能够在多个任务上取得优异的表现。

五、模型复杂度与计算资源

  • 普通神经网络:由于结构相对简单,所需的计算资源较少,训练时间也相对较短。
  • 深度学习:由于结构复杂,层数较多,所需的计算资源(如GPU、TPU等)和训练时间也显著增加。然而,随着硬件技术的不断进步和算法的优化,深度学习模型的训练效率也在不断提高。

概括而言,深度学习与普通神经网络的主要区别在于结构复杂度、特征学习方式、训练方式、应用场景与性能以及模型复杂度与计算资源等方面。深度学习通过构建更深的网络结构、自动提取特征、采用先进的训练技术和优化算法,在多个领域取得了显著优于普通神经网络的表现。

相关文章:

深度学习与普通神经网络有何区别?

深度学习与普通神经网络的主要区别体现在以下几个方面: 一、结构复杂度 普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。深度学习:强调通过5层以上的深度架构…...

Vue3、vue学习笔记

<!-- Vue3 --> 1、Vue项目搭建 npm init vuelatest cd 文件目录 npm i npm run dev // npm run _ 这个在package.json中查看scripts /* vue_study\.vscode可删 // vue_study\src\components也可删除(基本语法&#xff0c;不使用组件) */ // vue_study\.vscode\lau…...

python中C#类库调用+调试方法~~~

因为开发需要&#xff0c;我们经常会用C#来写一些库供python调用&#xff0c;但是在使用过程中难免会碰到一些问题&#xff0c;需要我们抽丝剥茧来解决~~~ 首先&#xff0c;我们在python中要想调用C#(基于.net)的dll&#xff0c;需要安装一个库&#xff0c;它就是 pythonnet …...

L33.【LeetCode笔记】循环队列(数组解法)

目录 1.题目 2.分析 方法1:链表 尝试使用单向循环链表模拟 插入节点 解决方法1:开辟(k1)个节点 解决方法2:使用变量size记录队列元素个数 获取队尾元素 其他函数的实现说明 方法2:数组 重要点:指针越界的解决方法 方法1:单独判断 方法2:取模 3.数组代码的逐步实现…...

css实现元素垂直居中显示的7种方式

文章目录 * [【一】知道居中元素的宽高](https://blog.csdn.net/weixin_41305441/article/details/89886846#_1) [absolute 负margin](https://blog.csdn.net/weixin_41305441/article/details/89886846#absolute__margin_2) [absolute margin auto](https://blog.csdn.net…...

【Python】Django 中的算法应用与实现

Django 中的算法应用与实现 在 Django 开发中&#xff0c;算法的应用可以极大地扩展 Web 应用的功能和性能。从简单的数据处理到复杂的机器学习模型&#xff0c;Django 都可以作为一个强大的后端框架来支持这些算法的实现。本文将介绍几种常见的算法及其在 Django 中的使用方法…...

Docker 运行 GPUStack 的详细教程

GPUStack GPUStack 是一个用于运行 AI 模型的开源 GPU 集群管理器。它具有广泛的硬件兼容性&#xff0c;支持多种品牌的 GPU&#xff0c;并能在 Apple MacBook、Windows PC 和 Linux 服务器上运行。GPUStack 支持各种 AI 模型&#xff0c;包括大型语言模型&#xff08;LLMs&am…...

Kubernetes中的 iptables 规则介绍

#作者&#xff1a;邓伟 文章目录 一、Kubernetes 网络模型概述二、iptables 基础知识三、Kubernetes 中的 iptables 应用四、查看和调试 iptables 规则五、总结 在 Kubernetes 集群中&#xff0c;iptables 是一个核心组件&#xff0c; 用于实现服务发现和网络策略。iptables 通…...

解决VScode 连接不上问题

问题 &#xff1a;VScode 连接不上 解决方案&#xff1a; 1、手动杀死VS Code服务器进程&#xff0c;然后重新尝试登录 打开xshell &#xff0c;远程连接服务器 &#xff0c;查看vscode的进程 &#xff0c;然后全部杀掉 [cxqiZwz9fjj2ssnshikw14avaZ ~]$ ps ajx | grep vsc…...

AI 驱动的软件测试革命:从自动化到智能化的进阶之路

&#x1f680;引言&#xff1a;软件测试的智能化转型浪潮 在数字化转型加速的今天&#xff0c;软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式&#xff0c;已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注…...

【Java代码审计 | 第六篇】XSS防范

文章目录 XSS防范使用HTML转义使用Content Security Policy (CSP)输入验证使用安全的库和框架避免直接使用用户输入构建JavaScript代码 XSS防范 使用HTML转义 在输出用户输入时&#xff0c;对特殊字符进行转义&#xff0c;防止它们被解释为HTML或JavaScript代码。 例如&…...

Android WebSocket工具类:重连、心跳、消息队列一站式解决方案

依赖库 使用 OkHttp 的WebSocket支持。 在 build.gradle 中添加依赖&#xff1a; implementation com.squareup.okhttp3:okhttp:4.9.3WebSocket工具类实现 import okhttp3.*; import android.os.Handler; import android.os.Looper; import android.util.Log;import java.ut…...

认识vue2脚手架

1.认识脚手架结构 使用VSCode将vue项目打开&#xff1a; package.json&#xff1a;包的说明书&#xff08;包的名字&#xff0c;包的版本&#xff0c;依赖哪些库&#xff09;。该文件里有webpack的短命令&#xff1a; serve&#xff08;启动内置服务器&#xff09; build命令…...

【STM32】STM32系列产品以及新手入门的STM32F103

&#x1f4e2; STM32F103xC/D/E 系列是一款高性能、低功耗的 32 位 MCU&#xff0c;适用于工业、汽车、消费电子等领域&#xff1b;基于 ARM Cortex-M3&#xff0c;主频最高 72MHz&#xff0c;支持 512KB Flash、64KB SRAM&#xff0c;适合复杂嵌入式应用&#xff0c;提供丰富的…...

<建模软件安装教程1>Blender4.2系列

Blender4.2安装教程 0注意&#xff1a;Windows环境下安装 第一步&#xff0c;百度网盘提取安装包。百度网盘链接&#xff1a;通过网盘分享的文件&#xff1a;blender.zip 链接: https://pan.baidu.com/s/1OG0jMMtN0qWDSQ6z_rE-9w 提取码: 0309 --来自百度网盘超级会员v3的分…...

CentOS Docker 安装指南

CentOS Docker 安装指南 引言 Docker 是一个开源的应用容器引擎&#xff0c;它允许开发者打包他们的应用以及应用的依赖包到一个可移植的容器中&#xff0c;然后发布到任何流行的 Linux 机器上&#xff0c;也可以实现虚拟化。Docker 容器是完全使用沙箱机制&#xff0c;相互之…...

分布式ID生成方案:数据库号段、Redis与第三方开源实现

分布式ID生成方案&#xff1a;数据库号段、Redis与第三方开源实现 引言 在分布式系统中&#xff0c;全局唯一ID生成是核心基础能力之一。本文针对三种主流分布式ID生成方案&#xff08;数据库号段模式、Redis方案、第三方开源框架&#xff09;进行解析&#xff0c;从实现原理…...

tcc编译器教程2 编译lua解释器

本文主要介绍了使用tcc编译器编译lua解释器源码。 1 介绍 lua是一门编程语言,开源且源码很容易编译,我平时用来测试C语言编程环境时经常使用。一般能编译成功就说明编程环境设置正常。下面用之前设置好的tcc编程环境进行测试。 2 获取源码 我一般有保留多个版本的lua源码进…...

利用 requestrepo 工具验证 XML外部实体注入漏洞

1. 前言 在数字化浪潮席卷的当下&#xff0c;网络安全的重要性愈发凸显。应用程序在便捷生活与工作的同时&#xff0c;也可能暗藏安全风险。XXE&#xff08;XML外部实体&#xff09;漏洞作为其中的典型代表&#xff0c;攻击者一旦利用它&#xff0c;便能窃取敏感信息、掌控服务…...

在 Maven 中使用 <scope> 元素:全面指南

目录 前言 在 Maven 中&#xff0c; 元素用于定义依赖项的作用范围&#xff0c;即依赖项在项目生命周期中的使用方式。正确使用 可以帮助我们优化项目的构建过程&#xff0c;减少不必要的依赖冲突&#xff0c;并提高构建效率。本文将详细介绍 的使用步骤、常见作用范围、代码…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...