cocos creator使用mesh修改图片为圆形,减少使用mask,j减少drawcall,优化性能
cocos creator版本2.4.11
一个mask占用drawcall 3个以上,针对游戏中技能图标,cd,以及多玩家头像,是有很大优化空间
1.上代码,只适合单独图片的,不适合在图集中的图片
const { ccclass, property } = cc._decorator;const gfx = cc.gfx;
cc.Class({extends: cc.Component,properties: {radius: 100, // 圆的半径segments: 32, // 圆的细分段数(顶点数)/*** !#en The sprite frame of the sprite.* !#zh 精灵的精灵帧* @property spriteFrame* @type {SpriteFrame}* @example* sprite.spriteFrame = newSpriteFrame;*/spriteFrame: {default: null,type: cc.SpriteFrame},},onLoad() {let renderer = this.node.getComponent(cc.MeshRenderer);if (!renderer) {renderer = this.node.addComponent(cc.MeshRenderer);}renderer.mesh = null;this.renderer = renderer;let builtinMaterial = cc.MaterialVariant.createWithBuiltin("unlit");renderer.setMaterial(0, builtinMaterial);this._applySpriteFrame();this.setMesh();},setMesh(){// 创建 Meshlet mesh = new cc.Mesh();// 计算顶点和 UVlet positions = [];let uvs = [];let indices = [];let colors = [];// 圆心顶点positions.push(cc.v2(0, 0)); // 圆心uvs.push(cc.v2(0.5, 0.5)); // 圆心 UVcolors.push(cc.Color.WHITE); // 圆心颜色// 圆边缘顶点for (let i = 0; i <= this.segments; i++) {let angle = (i / this.segments) * Math.PI * 2; // 计算角度let x = Math.cos(angle) * this.radius; // 计算 x 坐标let y = Math.sin(angle) * this.radius; // 计算 y 坐标positions.push(cc.v2(x, y)); // 添加顶点uvs.push(cc.v2((x / this.radius + 1) / 2, 1-(y / this.radius + 1) / 2)); // 添加 UVcolors.push(cc.Color.WHITE); // 添加颜色}// 设置索引(三角形扇)for (let i = 1; i <= this.segments; i++) {indices.push(0); // 圆心indices.push(i); // 当前顶点indices.push(i + 1); // 下一个顶点}mesh.init(new gfx.VertexFormat([{ name: gfx.ATTR_POSITION, type: gfx.ATTR_TYPE_FLOAT32, num: 2 },{ name: gfx.ATTR_UV0, type: gfx.ATTR_TYPE_FLOAT32, num: 2 },]), positions.length, true);mesh.setVertices(gfx.ATTR_POSITION, positions);mesh.setVertices(gfx.ATTR_UV0, uvs);mesh.setIndices(indices);this.renderer.mesh = mesh;},// 更新图片_applySpriteFrame() {// cc.log('_applySpriteFrame');if (this.spriteFrame) {const renderer = this.renderer;let material = renderer._materials[0];// Reset materiallet texture = this.spriteFrame.getTexture();material.define("USE_DIFFUSE_TEXTURE", true);material.setProperty('diffuseTexture', texture);}}
});
这个js组件,绑定到节点上,把要渲染的spriteFrame挂在上面,运行就可以了,这种方式只适合单独图片,不适合图集中的图片

运行效果,下面是对比了这个图片
说明:这种方式是直
接修改图片的mesh网格结构,使用meshRenderer组件,不能挂载sprite组件,使用shader也可以达到效果,但是shader是在Gpu层修改显示,图片形状没有变,这个是运行的时候直接修改形状,而且shader修改的话会有问题,例如打断动态合批,如果项目勾选了动态合批或者图片在图集中,shader修改是无效的
这种方式可以降低mask增加的drawcall
2.工具式的,直接调用,升级版,可以修改图集中的某个图片的显示
const { ccclass, property } = cc._decorator;const gfx = cc.gfx;
cc.Class({extends: cc.Component,properties: {radius: 100, // 圆的半径segments: 32, // 圆的细分段数(顶点数)/*** !#en The sprite frame of the sprite.* !#zh 精灵的精灵帧* @property spriteFrame* @type {spriteFrame}*/spriteFrame: {default: null,type: cc.spriteFrame,},},/**设置数据显示 需要等spriteFrame加载完成后调用,可以拿到实际的图片* radius: 半径* segments: 圆细分段数,越多会越圆滑,但是性能消耗会更大* node:节点,这里需要使用mesheRenderer组件,所以需要把sprite剔除* isAtlas:是否是图集中的图片*/setDataShow(node, radius, segments, isAtlas) {// MeshRendererlet renderer = this.node.getComponent(cc.MeshRenderer);if (!renderer) {renderer = this.node.addComponent(cc.MeshRenderer);}renderer.mesh = null;this.renderer = renderer;let builtinMaterial = cc.MaterialVariant.createWithBuiltin("unlit");renderer.setMaterial(0, builtinMaterial);renderer.enabled = false;this.radius = radius;this.segments = segments;let sp = node.getComponent(cc.Sprite);if (sp) {this.spriteFrame = sp.spriteFrame;node.removeComponent(cc.Sprite);}// 把图片加载到renderer上的材质this.applySpriteFrame();// 设置meshif (isAtlas) {// 大图集中的texturethis.setMeshByAtlas();} else {// 单个图片this.setMesh();}// 这里必须延迟一帧,不然不会刷新mesh,显示不出来图片setTimeout(() => {if(cc.isValid(renderer)){renderer.enabled = true;}}, 100);},/**更新mesh,在图集中的 */setMeshByAtlas() {let uv = this.spriteFrame.uv;// 创建 Meshlet mesh = new cc.Mesh();// 计算顶点和 UVlet positions = [];let uvs = [];let indices = [];let colors = [];// 圆心顶点positions.push(cc.v2(0, 0)); // 圆心uvs.push(cc.v2((uv[6] + uv[0]) / 2, (uv[7] + uv[1]) / 2)); // 圆心 UV(取中心点)colors.push(cc.Color.WHITE); // 圆心颜色// 圆边缘顶点for (let i = 0; i <= this.segments; i++) {let angle = (i / this.segments) * Math.PI * 2; // 计算角度let x = Math.cos(angle) * this.radius; // 计算 x 坐标let y = Math.sin(angle) * this.radius; // 计算 y 坐标positions.push(cc.v2(x, y)); // 添加顶点// 计算 UV 坐标(根据图集的 UV 信息进行映射)let u = (x / this.radius + 1) / 2; // 归一化到 [0, 1]let v = (y / this.radius + 1) / 2; // 归一化到 [0, 1]let uvX = uv[0] + (uv[2] - uv[0]) * u; // 根据图集 UV 计算实际 UVlet uvY = uv[1] + (uv[5] - uv[1]) * v; // 根据图集 UV 计算实际 UVuvs.push(cc.v2(uvX, uvY)); // 添加 UVcolors.push(cc.Color.WHITE); // 添加颜色}// 设置索引(三角形扇)for (let i = 1; i <= this.segments; i++) {indices.push(0); // 圆心indices.push(i); // 当前顶点indices.push(i + 1); // 下一个顶点}mesh.init(new gfx.VertexFormat([{ name: gfx.ATTR_POSITION, type: gfx.ATTR_TYPE_FLOAT32, num: 2 },{ name: gfx.ATTR_UV0, type: gfx.ATTR_TYPE_FLOAT32, num: 2 },]), positions.length, true);mesh.setVertices(gfx.ATTR_POSITION, positions);mesh.setVertices(gfx.ATTR_UV0, uvs);mesh.setIndices(indices);this.renderer.mesh = mesh;},// 更新mesh,单独图片的setMesh() {// 创建 Meshlet mesh = new cc.Mesh();// 计算顶点和 UVlet positions = [];let uvs = [];let indices = [];let colors = [];// 圆心顶点positions.push(cc.v2(0, 0)); // 圆心uvs.push(cc.v2(0.5, 0.5)); // 圆心 UVcolors.push(cc.Color.WHITE); // 圆心颜色// 圆边缘顶点for (let i = 0; i <= this.segments; i++) {let angle = (i / this.segments) * Math.PI * 2; // 计算角度let x = Math.cos(angle) * this.radius; // 计算 x 坐标let y = Math.sin(angle) * this.radius; // 计算 y 坐标positions.push(cc.v2(x, y)); // 添加顶点uvs.push(cc.v2((x / this.radius + 1) / 2, (y / this.radius + 1) / 2)); // 添加 UVcolors.push(cc.Color.WHITE); // 添加颜色}// 设置索引(三角形扇)for (let i = 1; i <= this.segments; i++) {indices.push(0); // 圆心indices.push(i); // 当前顶点indices.push(i + 1); // 下一个顶点}mesh.init(new gfx.VertexFormat([{ name: gfx.ATTR_POSITION, type: gfx.ATTR_TYPE_FLOAT32, num: 2 },{ name: gfx.ATTR_UV0, type: gfx.ATTR_TYPE_FLOAT32, num: 2 },]), positions.length, true);mesh.setVertices(gfx.ATTR_POSITION, positions);mesh.setVertices(gfx.ATTR_UV0, uvs);mesh.setIndices(indices);this.renderer.mesh = mesh;},// 更新图片applySpriteFrame() {// cc.log('_applySpriteFrame');if (this.spriteFrame) {const renderer = this.renderer;let material = renderer._materials[0];// Reset materialmaterial.define("USE_DIFFUSE_TEXTURE", true);material.setProperty('diffuseTexture', this.spriteFrame.getTexture());}},});
外部调用这个组件的方法,setDataShow传对应的参数就可以,节点上需要挂sprite组件,sprite更新图片或者初始化加载的时候,调用这个方法setDataShow,同时兼容删除节点的sprite组件,如果不想挂载sprite组件,默认直接挂上meshRenderer组件,需要自己修改下代码,把参数node直接改成传对应的spriteFrame图片

Cocos Creator 的纹理坐标系(UV 坐标系)的 Y 轴方向是 从上到下 的,如果结果图片y是反向的,可以设代码修改uvs中的y的取值
-
将
v的计算改为1 - (y / radius + 1) / 2,即对 Y 方向取反。
相关文章:
cocos creator使用mesh修改图片为圆形,减少使用mask,j减少drawcall,优化性能
cocos creator版本2.4.11 一个mask占用drawcall 3个以上,针对游戏中技能图标,cd,以及多玩家头像,是有很大优化空间 1.上代码,只适合单独图片的,不适合在图集中的图片 const { ccclass, property } cc._decorator;c…...
C++ Qt开发成长之路,从入门到企业级实战项目,保姆级学习路线
Qt 介绍 Qt是一个跨平台的C图形用户界面应用程序开发框架,最初由挪威的Trolltech公司开发,后来被诺基亚收购,现在由Qt公司维护。它提供了丰富的工具和类库,使开发者能够轻松地创建各种类型的应用程序,包括桌面应用、移…...
JavaWeb后端基础(7)AOP
AOP是Spring框架的核心之一,那什么是AOP?AOP:Aspect Oriented Programming(面向切面编程、面向方面编程),其实说白了,面向切面编程就是面向特定方法编程。AOP是一种思想,而在Spring框…...
Uniapp实现地图获取定位功能
摘要:本文将手把手教你如何在Uniapp项目中集成地图功能、实现定位获取,并解决微信小程序、APP、H5三端的兼容性问题🚀🚀🚀 一、环境准备 地图平台选择 微信小程序:腾讯地图(强制使用)…...
批量将 Excel 转换 PDF/Word/CSV以及图片等其它格式
Excel 格式转换是我们工作过程当中非常常见的一个需求,我们通常需要将 Excel 转换为其他各种各样的格式。比如将 Excel 转换为 PDF、比如说将 Excel 转换为 Word、再比如说将 Excel文档转换为图片等等。 这些操作对我们来讲都不难,因为我们通过 Office 都…...
Flutter:StatelessWidget vs StatefulWidget 深度解析
目录 1. 引言 2. StatelessWidget(无状态组件) 2.1 定义与特点 2.2 代码示例 3. StatefulWidget(有状态组件) 3.1 定义与特点 3.2 代码示例 4. StatelessWidget vs StatefulWidget 对比 5. StatefulWidget 生命周期 5.1…...
Stream流学习
Stream流 把数据放进stream流水线,对数据进行一系列操作(中间方法),最后封装(终结方法)。 Stream.of()允许传入任何参数 常见中间方法 可以对数据进行链式(流水线)操作,但…...
多视图几何--恢复相机位姿/内参的几种方法
恢复相机位姿的几种方法 1分解投影矩阵 1.1投影矩阵分解为相机内外参矩阵的完整解析 投影矩阵(Projection Matrix)是计算机视觉中将三维世界点映射到二维像素坐标的核心工具,其本质是相机内参矩阵(Intrinsic Matrix)…...
[数据结构]堆详解
目录 一、堆的概念及结构 二、堆的实现 1.堆的定义 2堆的初始化 3堆的插入 编辑 4.堆的删除 5堆的其他操作 6代码合集 三、堆的应用 (一)堆排序(重点) (二)TOP-K问题 一、堆的概念及结构 堆的…...
领域驱动设计(DDD)与MVC架构:理念对比与架构选择
领域驱动设计(DDD)与MVC架构:理念对比与架构选择 一、架构之争的本质:业务复杂度驱动技术演进 在软件开发领域,没有银弹式的完美架构,只有适合当前业务场景的合理选择。MVC与DDD的区别本质上是业务复杂度与…...
牛客周赛:84:B:JAVA
链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 题目描述 import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Main {public static void main(String[] args) {Scanner scanner new Scanner(S…...
【理想解法学习笔记】
目录 理想解法原理简介算法步骤属性值规范化方法代码示例 理想解法 原理简介 TOPSIS(Technique for Order Preference by Simi larity to IdealSolution)法是一种逼近理想解的排序方法。其基本的处理思路是:首先建立初始化决策矩阵,而后基于规范化后的初…...
CI/CD—Jenkins配置一次完整的jar自动化发布流程
背景: 实现设想: 要创建自动化发布,需要准备一台测试服务器提前安装好java运行所需的环境,JDK版本最好和Windows开发机器上的版本一致,在Jenkins上配置将构建好的jar上传到测试服务器上,测试服务器自动启动…...
Magento2根据图片文件包导入产品图片
图片包给的图片文件是子产品的图片,如下图:A104255是主产品的sku <?php/*** 根据图片包导入产品图片,包含子产品和主产品* 子产品是作为主图,主产品是作为附加图片*/use Magento\Framework\App\Bootstrap;include(../app/boot…...
从零开始的python学习(五)P71+P72+P73+P74
本文章记录观看B站python教程学习笔记和实践感悟,视频链接:【花了2万多买的Python教程全套,现在分享给大家,入门到精通(Python全栈开发教程)】 https://www.bilibili.com/video/BV1wD4y1o7AS/?p6&share_sourcecopy_web&v…...
OpenHarmony5.0分布式系统源码实现分析—软总线
一、引言 OpenHarmony 作为一款面向万物互联的操作系统,其分布式软总线(Distributed SoftBus)是实现设备间高效通信和协同的核心技术之一。分布式软总线通过构建一个虚拟的总线网络,使得不同设备能够无缝连接、通信和协同工作。本…...
基于SpringBoot实现旅游酒店平台功能六
一、前言介绍: 1.1 项目摘要 随着社会的快速发展和人民生活水平的不断提高,旅游已经成为人们休闲娱乐的重要方式之一。人们越来越注重生活的品质和精神文化的追求,旅游需求呈现出爆发式增长。这种增长不仅体现在旅游人数的增加上࿰…...
代码随想录算法训练营第六十一天 | 108. 冗余连接 109. 冗余连接II
108. 冗余连接 题目链接:KamaCoder 文档讲解:代码随想录 状态:AC Java代码: import java.util.*;class Main {public static int[] father;public static void main(String[] args) {Scanner scan new Scanner(System.in);int n…...
RoboVQA:机器人多模态长范围推理
23 年 11 月来自 Google Deepmind 的论文“RoboVQA: Multimodal Long-Horizon Reasoning for Robotics”。 本文提出一种可扩展、自下而上且本质多样化的数据收集方案,该方案可用于长期和中期的高级推理,与传统的狭窄自上而下的逐步收集相比,…...
TCP/IP原理详细解析
前言 TCP/IP是一种面向连接,可靠的传输,传输数据大小无限制的。通常情况下,系统与系统之间的http连接需要三次握手和四次挥手,这个执行过程会产生等待时间。这方面在日常开发时需要注意一下。 TCP/IP 是互联网的核心协议族&…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
