当前位置: 首页 > news >正文

如何选择开源向量数据库

文章目录

  • 评估维度
    • 查询性能
    • 索引与存储
    • 扩展性
    • 数据管理能力
    • 生态支持
  • 常见向量数据库对比



评估维度

选择开源向量数据库时,需要综合考虑查询性能、数据规模、索引构建速度、生态支持等多个因素,以下是关键的评估维度:选择开源向量数据库时,需要综合考虑查询性能、数据规模、索引构建速度、生态支持等多个因素,以下是关键的评估维度:

查询性能

  • 向量检索速度:评估ANN(Approximate Nearest Neighbor)查询的QPS(每秒查询数)。
  • 召回率:高效的向量数据库需要在速度和准确性之间找到平衡,例如HNSW、IVF+PQ等索引策略的效果。
  • 延迟:对于实时应用,低查询延迟非常重要。

索引与存储

  • 索引类型:支持HNSW(Hierarchical Navigable Small World)、IVF(Inverted File System)、PQ(Product Quantization)等不同索引方案,适用于不同规模的数据。
  • 索引构建速度:如果数据量较大,索引的构建速度可能会影响上线效率。
  • 压缩技术:是否支持量化(如PQ、OPQ)来减少存储占用。

扩展性

  • 是否支持分布式:大规模向量数据通常需要分布式存储,如Milvus、Vespa支持多节点部署。
  • 可扩展性:是否支持在线扩展、节点动态添加和删除。

数据管理能力

  • 支持结构化数据:是否能与关系型数据结合,如支持JSON存储、属性过滤等(如Milvus支持Hybrid Search)。
  • 数据更新和删除:有些向量数据库的删除和更新较慢(如HNSW删除代价高)。

生态支持

  • 语言SDK支持:是否提供Python、Java、Go等语言SDK,便于集成到现有系统。
  • 社区活跃度:社区是否活跃,是否有稳定的开源维护团队支持。
  • 开源协议:是否符合项目的开源需求,如Apache 2.0、MIT等。

常见向量数据库对比

数据库索引类型分布式支持适用场景主要优点
MilvusHNSW、IVF-PQ、DiskANN✅ 是大规模向量检索、RAG丰富的索引支持,支持结构化数据
FaissHNSW、IVF-PQ、LSH❌ 否高效离线索引、GPU加速超高性能,支持GPU
WeaviateHNSW+Filters✅ 是语义搜索、知识库内置全文搜索、GraphQL查询
AnnoyKD-Tree, Random Projection❌ 否小规模向量检索轻量级、无外部依赖
VespaHNSW✅ 是Web 搜索、广告推荐结构化+向量检索
PGVectorHNSW✅ 是PostgreSQL嵌入式关系型数据库+向量查询

相关文章:

如何选择开源向量数据库

文章目录 评估维度查询性能索引与存储扩展性数据管理能力生态支持 常见向量数据库对比 评估维度 选择开源向量数据库时,需要综合考虑查询性能、数据规模、索引构建速度、生态支持等多个因素,以下是关键的评估维度:选择开源向量数据库时&…...

c#面试题整理4

1.stirng str"",string strnull,俩者有何区别 空字符串占有存储控件,null不占用 2.class与struct的异同 异同class 可继承 引用类型 1.都可以定义方法字段 2.都可实例化,与类的使用几乎一样 struct 不可继承 值类型 只能声明带…...

智能焊机监测系统:打造工业安全的数字化盾牌

在现代工业生产中,焊机作为核心设备之一,其稳定性和安全性直接关系到生产效率和产品质量。德州迪格特科技有限公司推出的智能焊机监测系统,通过先进的技术手段,为工业生产构筑了一道坚固的安全防线。 智能监测,保障焊…...

Centos的ElasticSearch安装教程

由于我们是用于校园学习,所以最好是关闭防火墙 systemctl stop firewalld systemctl disable firewalld 个人喜欢安装在opt临时目录,大家可以随意 在opt目录下创建一个es-standonely-docker目录 mkdir es-standonely-docker 进入目录编辑yml文件 se…...

一二三应用开发平台——能力扩展:多数据源支持

背景 随着项目规模的扩大&#xff0c;单一数据源已无法满足复杂业务需求&#xff0c;多数据源应运而生。 技术选型 MyBatis-Plus 的官网提供了两种多数据源扩展插件&#xff1a;开源生态的 <font style"color:rgb(53, 56, 65);">dynamic-datasource</fon…...

pandas-基础(数据结构及文件访问)

1 Pandas的数据结构 1.1 Series 特点&#xff1a;一维的数据型对象&#xff0c;包含一个值序列和数据标签(即索引&#xff09; 创建Series&#xff1a; pandas.Series(dataNone, indexNone, dtypeNone, nameNone, copyFalse, fastpathFalse) 参数说明&#xff1a; data&a…...

数据分析与AI丨AI Fabric:数据和人工智能架构的未来

AI Fabric 架构是模块化、可扩展且面向未来的&#xff0c;是现代商业环境中企业实现卓越的关键。 在当今商业环境中&#xff0c;数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生&#xff0c;新的应用场景不断涌现&#xff0c;前沿探索持续拓展。可遗憾的是&…...

如何根据应用需求选择光谱相机

一、按核心参数匹配需求 ‌光谱范围‌ ‌农业监测‌&#xff1a;需覆盖可见光至近红外&#xff08;400-1000nm&#xff09;&#xff0c;以捕捉作物叶绿素、水分等特征‌。 ‌地质勘探‌&#xff1a;需宽光谱&#xff08;350-2500nm&#xff09;及高分辨率&#xff08;3-10nm…...

内存泄漏出现的时机和原因,如何避免?

由于时间比较紧张我就不排版了&#xff0c;但是对于每一种可能的情况都会出对应的代码示例以及解决方案代码示例。 内存泄漏可能的原因之一在于用户在动态分配一个内存空间之中&#xff0c;忘记将这部分内容手动释放。例如&#xff1a;&#xff08;c之中使用new分配内存没有使…...

Python第十六课:深度学习入门 | 神经网络解密

🎯 本节目标 理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生) 1. 神经元对比 生物神经元人工神经元树突接收信号输入层接收特…...

从0到1,带你开启TypeScript的奇妙之旅

目录 一、TypeScript 是什么? 二、为什么要学习 TypeScript? 三、快速上手:环境搭建与 Hello World (一)安装 TypeScript (二)创建第一个 TypeScript 文件 (三)编译 TypeScript 文件 (四)运行编译后的 JavaScript 文件 四、深入 TypeScript 核心语法 (一)…...

如何修复“RPC 服务器不可用”错误

远程过程调用&#xff08;Remote Procedure Call&#xff0c; RPC&#xff09;是允许客户端在不同计算机上执行进程的众多可用网络进程之一。本文将深入探讨RPC如何在不同的软件系统之间实现无缝消息交换&#xff0c;同时重点介绍与RPC相关的常见错误的一些原因。 什么是远程过…...

【redis】五种数据类型和编码方式

文章目录 五种数据类型编码方式stringhashlistsetzset查询内部编码 五种数据类型 字符串&#xff1a;Java 中的 String哈希&#xff1a;Java 中的 HashMap列表&#xff1a;Java 中的 List集合&#xff1a;Java 中的 Set有序集合&#xff1a;除了存 member 之外&#xff0c;还有…...

今日头条文章爬虫教程

今日头条文章爬虫教程 随着互联网的发展&#xff0c;新闻资讯类平台如今日头条积累了海量的数据。对于数据分析师、研究人员等群体来说&#xff0c;获取这些数据进行分析和研究具有重要的价值。本文将介绍如何使用Python编写爬虫&#xff0c;爬取今日头条的文章数据。 一、准…...

使用Modelsim手动仿真

FPGA设计流程 在设计输入之后,设计综合前进行 RTL 级仿真,称为综合前仿真,也称为前仿真或 功能仿真。前仿真也就是纯粹的功能仿真,主旨在于验证电路的功能是否符合设计要求,其特点是不考虑电路门延迟与线延迟。在完成一个设计的代码编写工作之后,可以直接对代码进行仿真,…...

从Manus看网络安全:通用AI智能体重构安全运营

当通用AI智能体遇见网络安全 开启主动防御的跃迁 在勒索软件平均潜伏期缩短至3.7天、APT攻击复杂度指数级攀升的当下&#xff0c;传统SOAR产品&#xff08;安全编排、自动化和响应&#xff09;正面临两大困境&#xff1a; 规则依赖症&#xff1a;基于Playbook的响应逻辑&…...

南开提出1Prompt1Story,无需训练,可通过单个连接提示实现一致的文本到图像生成。

&#xff08;1Prompt1Story&#xff09;是一种无训练的文本到图像生成方法&#xff0c;通过整合多个提示为一个长句子&#xff0c;并结合奇异值重加权&#xff08;SVR&#xff09;和身份保持交叉注意力&#xff08;IPCA&#xff09;技术&#xff0c;解决了生成图像中身份不一致…...

hooks useModule自定义hooks (二次封装AgGridReact ag-table)自定义表头,自定义表头搜索

场景业务&#xff1a; 多次运用AgGridReact的table 列表 思路&#xff1a; 运用自定义hooks进行二次封装&#xff1a; 通用配置例如&#xff1a;传参的参数&#xff0c;传参的url&#xff0c;需要缓存的key这些键值类 定制化配置例如&#xff1a;需要对table 的一些定制化传…...

Manus无需邀请码即可使用的平替方案-OpenManus实测

文章目录 Manus 简介核心定位技术架构核心特点应用场景性能表现用户体验发展计划OpenManus技术架构与设计理念核心功能特性应用场景案例与闭源Manus的差异对比安装使用与实战演示执行过程记录简单案例-快速写一个helloworld的java程序复杂案例-分析特斯拉汽车近三年财务数据并生…...

常用的gpt

1、DeepSeek 好用。可惜现在热度上去了&#xff0c;经常查技术问题会报网络繁忙 2、Qwen Chat Qwen Chat 千问&#xff0c;阿里的gpt。需要注册账号&#xff0c;好用程度感觉跟deepSeek差不多。并且不会像deepSeek一样报网络繁忙 3、文心一样 百度的。相对上2个技术问题较弱…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...