时序和延时
1、延迟模型的类型
verilog有三种类型的延迟模型:分布延迟 、 集总延迟 、 路径延迟(pin to pin)
1.1、 分布延迟
分布延迟是在每个独立元件的基础上进行定义的。
module M(output wire out ,input wire a ,input wire b ,input wire c ,input wire d);wire e,f ;and #5 a1(e,a,b) ;and #7 a2(f,c,d) ;and #4 a3(out,e,f) ;endmodule//.............................................
module M(output wire out ,input wire a ,input wire b ,input wire c ,input wire d);wire e,f ;assign #5 e = a & b ;assign #7 f = c & d ;assign #4 out = e & f ; endmodule
1.2、 集总延迟
集总延迟是在每个独立模块的基础上定义的。
module M(output wire out ,input wire a ,input wire b ,input wire c ,input wire d);wire e,f ;and a1(e,a,b) ;and a2(f,c,d) ;and #11 a3(out,e,f) ; //延迟只在输出门外endmodule
1.3、 路径延迟
可以查阅数据手册直接获得标准组件的引脚到引脚的延迟(路径延迟)。
2、路径延迟建模
2.1、 specify块
连接方式:
并行连接:=>
全连接 :*> ( in 和 out 两两连接 )
module M(output wire out ,input wire a ,input wire b ,input wire c ,input wire d);wire e,f ;specify(a => out) = 9 ; (b => out) = 9 ; (c => out) = 11 ; (d => out) = 11 ; endspecifyand a1(e,a,b) ;and a2(f,c,d) ;and a3(out,e,f) ; endmodule
specparam
specifyspecparam d_to_q = 9 ;specparam clk_to_q = 11 ;(d => q) = d_to_q ;(clk => q) = clk_to_q ;endspecify
条件路径延迟
module M(output wire out ,input wire a ,input wire b ,input wire c ,input wire d);wire e,f ;specifyif( a == 1'b1 )(a => out) = 9 ;if( ~a == 1'b1 )(a => out) = 11 ;if( b & c )(b => out) = 9 ;if( ~(b & c) )(b => out) = 13 ;if( {c,d} == 2'b01 )(c,d *> out) = 11 ;if( {c,d} != 2'b01 )(c,d *> out) = 13 ;endspecifyand a1(e,a,b) ;and a2(f,c,d) ;and a3(out,e,f) ; endmodule
3、时序检查
3.1、setup 和 hold检查
建立时间检查
specify$setup(data,posedge clk,3) ; //3是需要的最小建立时间 endspecify
保持时间检查
specify$hold(posedge clk ,data,5) ;//5是最小保持时间endspecify
3.2、width检查
脉冲宽度检查
specify$width(posedge clk , 6 ) ;endspecify
4、延迟反标注
相关文章:
时序和延时
1、延迟模型的类型 verilog有三种类型的延迟模型:分布延迟 、 集总延迟 、 路径延迟(pin to pin) 1.1、 分布延迟 分布延迟是在每个独立元件的基础上进行定义的。 module M(output wire out ,input wire a …...

高效自动化测试:打造Python+Requests+Pytest+Allure+YAML的接口测试框架
一、背景 在快节奏的开发周期中,如何确保接口质量?自动化测试是关键。通过构建标准化、可复用的测试框架,能显著提升测试效率与准确性,为项目质量保驾护航[1][7]。 二、目标 ✅ 核心目标: ● 实现快速、高效的接口测试…...
[微服务设计]1_微服务
摘要:微服务设计应当是面向服务、适配团队、循序渐进的设计。 目录 开篇引言 微服务 什么样的服务是健康的服务 什么是微服务 面向服务的架构 微服务较传统单体架构多的行为 微服务行为带来的问题 微服务解决的问题 开篇引言 在之前的工作中,有…...

Webservice创建
Webservice创建 服务端创建 3层架构 service注解(commom模块) serviceimpl(server) 服务端拦截器的编写 客户端拦截器 客户端调用服务端(CXF代理) 客户端调用服务端(动态模式调用&a…...

Unity安卓Android从StreamingAssets加载AssetBundle
在安卓下无法获取StreamingAssets目录下所有目录和文件名,所以需要提前将文件名整理成一个文件filelist.txt。 1.用批处理命令将StreamingAssets下所有文件名输出到filelist.txt中 chcp 65001是使用UTF-8编码,否则中文是乱码。 echo off chcp 65001 d…...
【MySQL_06】表的相关操作
文章目录 一、表的基本操作1.1 创建表1.2 修改表结构1.2.1 添加列1.2.2 删除列1.2.3 修改列1.2.4 重命名列1.2.5 添加约束 1.3 删除表1.4 查询表结构1.5 重命名表1.6 复制表1.6.1 仅复制结构1.6.2 复制结构及数据 1.7 清空表数据 二、数据完整性约束2.1 主键约束2.2 唯一约束2.…...
如何选择开源向量数据库
文章目录 评估维度查询性能索引与存储扩展性数据管理能力生态支持 常见向量数据库对比 评估维度 选择开源向量数据库时,需要综合考虑查询性能、数据规模、索引构建速度、生态支持等多个因素,以下是关键的评估维度:选择开源向量数据库时&…...
c#面试题整理4
1.stirng str"",string strnull,俩者有何区别 空字符串占有存储控件,null不占用 2.class与struct的异同 异同class 可继承 引用类型 1.都可以定义方法字段 2.都可实例化,与类的使用几乎一样 struct 不可继承 值类型 只能声明带…...
智能焊机监测系统:打造工业安全的数字化盾牌
在现代工业生产中,焊机作为核心设备之一,其稳定性和安全性直接关系到生产效率和产品质量。德州迪格特科技有限公司推出的智能焊机监测系统,通过先进的技术手段,为工业生产构筑了一道坚固的安全防线。 智能监测,保障焊…...

Centos的ElasticSearch安装教程
由于我们是用于校园学习,所以最好是关闭防火墙 systemctl stop firewalld systemctl disable firewalld 个人喜欢安装在opt临时目录,大家可以随意 在opt目录下创建一个es-standonely-docker目录 mkdir es-standonely-docker 进入目录编辑yml文件 se…...

一二三应用开发平台——能力扩展:多数据源支持
背景 随着项目规模的扩大,单一数据源已无法满足复杂业务需求,多数据源应运而生。 技术选型 MyBatis-Plus 的官网提供了两种多数据源扩展插件:开源生态的 <font style"color:rgb(53, 56, 65);">dynamic-datasource</fon…...
pandas-基础(数据结构及文件访问)
1 Pandas的数据结构 1.1 Series 特点:一维的数据型对象,包含一个值序列和数据标签(即索引) 创建Series: pandas.Series(dataNone, indexNone, dtypeNone, nameNone, copyFalse, fastpathFalse) 参数说明: data&a…...

数据分析与AI丨AI Fabric:数据和人工智能架构的未来
AI Fabric 架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。 在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是&…...

如何根据应用需求选择光谱相机
一、按核心参数匹配需求 光谱范围 农业监测:需覆盖可见光至近红外(400-1000nm),以捕捉作物叶绿素、水分等特征。 地质勘探:需宽光谱(350-2500nm)及高分辨率(3-10nm…...
内存泄漏出现的时机和原因,如何避免?
由于时间比较紧张我就不排版了,但是对于每一种可能的情况都会出对应的代码示例以及解决方案代码示例。 内存泄漏可能的原因之一在于用户在动态分配一个内存空间之中,忘记将这部分内容手动释放。例如:(c之中使用new分配内存没有使…...
Python第十六课:深度学习入门 | 神经网络解密
🎯 本节目标 理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生) 1. 神经元对比 生物神经元人工神经元树突接收信号输入层接收特…...

从0到1,带你开启TypeScript的奇妙之旅
目录 一、TypeScript 是什么? 二、为什么要学习 TypeScript? 三、快速上手:环境搭建与 Hello World (一)安装 TypeScript (二)创建第一个 TypeScript 文件 (三)编译 TypeScript 文件 (四)运行编译后的 JavaScript 文件 四、深入 TypeScript 核心语法 (一)…...

如何修复“RPC 服务器不可用”错误
远程过程调用(Remote Procedure Call, RPC)是允许客户端在不同计算机上执行进程的众多可用网络进程之一。本文将深入探讨RPC如何在不同的软件系统之间实现无缝消息交换,同时重点介绍与RPC相关的常见错误的一些原因。 什么是远程过…...

【redis】五种数据类型和编码方式
文章目录 五种数据类型编码方式stringhashlistsetzset查询内部编码 五种数据类型 字符串:Java 中的 String哈希:Java 中的 HashMap列表:Java 中的 List集合:Java 中的 Set有序集合:除了存 member 之外,还有…...
今日头条文章爬虫教程
今日头条文章爬虫教程 随着互联网的发展,新闻资讯类平台如今日头条积累了海量的数据。对于数据分析师、研究人员等群体来说,获取这些数据进行分析和研究具有重要的价值。本文将介绍如何使用Python编写爬虫,爬取今日头条的文章数据。 一、准…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...