蓝桥杯备赛-差分-重新排序
问题描述
给定一个数组 AA 和一些查询 Li,RiLi,Ri, 求数组中第 LiLi 至第 RiRi 个元素之和。
小蓝觉得这个问题很无聊, 于是他想重新排列一下数组, 使得最终每个查 询结果的和尽可能地大。小蓝想知道相比原数组, 所有查询结果的总和最多可 以增加多少?
输入格式
输入第一行包含一个整数 nn 。
第二行包含 nn 个整数 A1,A2,⋯,AnA1,A2,⋯,An, 相邻两个整数之间用一个空格分隔。
第三行包含一个整数 mm 表示查询的数目。
接下来 mm 行, 每行包含两个整数 Li、RiLi、Ri, 相邻两个整数之间用一个空格分 隔。
输出格式
输出一行包含一个整数表示答案。
样例输入
5
1 2 3 4 5
2
1 3
2 5
样例输出
4
样例说明
原来的和为 6+14=206+14=20, 重新排列为 (1,4,5,2,3)(1,4,5,2,3) 后和为 10+14=2410+14=24, 增 加了 4。
评测用例规模与约定
对于 30%30% 的评测用例, n,m≤50n,m≤50;
对于 50%50% 的评测用例, n,m≤500n,m≤500;
对于 70%70% 的评测用例, n,m≤5000n,m≤5000;
对于所有评测用例, 1≤n,m≤105,1≤Ai≤106,1≤Li≤Ri≤1061≤n,m≤105,1≤Ai≤106,1≤Li≤Ri≤106 。
#include<stdio.h>
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
//计算每个位置的查询次数,查询次数最多的放最大的数字
//注意查询和要用long long
//差分--对于一段区间的操作--先在差分数组上做标记--再利用a[i]=a[i-1]+d[i]---重置a数组
//cha是d的前缀和数组,d是cha的差分数组
int main() {int n;cin >> n;vector<int> a(n + 5, 0);vector<int> cha(n + 5, 0);vector<int> d(n + 5, 0);for (int i = 1; i <= n; i++) {cin >> a[i];}//初始化a数组int m;cin >> m;int l, r;for (int i = 1; i <= m; i++) {cin >> l >> r;d[l]++;d[r + 1]--;}//初始化差分数组for (int i = 1; i <= n; i++) {cha[i] = cha[i - 1] + d[i];}//更新cha数组long long sum1 = 0;long long sum2 = 0;for (int i = 1; i <= n; i++){sum1 += (long long)a[i] * cha[i];
//将 sum1 += a[i] * cha[i]; 改为 sum1 += (long long)a[i] * cha[i]; 原因在于数据类型的溢出问题。当 a[i] 和 cha[i] 的值较大时,a[i] * cha[i] 的结果可能会超出 int 类型的表示范围(int 通常是 32 位,范围是 -2^31 到 2^31 - 1)。}sort(a.begin() + 1, a.begin() + 1 + n);//从大到小sort(cha.begin() + 1, cha.begin() + 1 + n);for (int i = 1; i <= n; i++) {sum2 += (long long)a[i] * cha[i];}cout << sum2 - sum1;return 0;
}
前缀和与差分 图文并茂 超详细整理(全网最通俗易懂)-CSDN博客
相关文章:
蓝桥杯备赛-差分-重新排序
问题描述 给定一个数组 AA 和一些查询 Li,RiLi,Ri, 求数组中第 LiLi 至第 RiRi 个元素之和。 小蓝觉得这个问题很无聊, 于是他想重新排列一下数组, 使得最终每个查 询结果的和尽可能地大。小蓝想知道相比原数组, 所有查询结果的总和最多可 以增加多少? 输入格式 输…...
使用DeepSeek+蓝耘快速设计网页简易版《我的世界》小游戏
前言:如今,借助先进的人工智能模型与便捷的云平台,即便是新手开发者,也能开启创意游戏的设计之旅。DeepSeek 作为前沿的人工智能模型,具备强大的功能与潜力,而蓝耘智算云平台则为其提供了稳定高效的运行环境…...
基于Matlab设计GUI图像处理交互界面
Image-Processing-GUI 项目说明 本博文提供了完整的代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。 本项目是《Matlab实践》中图像处理软件题目,本项目实现的具体内容如下 基于Matlab设计GUI交互界面图像的…...
javase集合框架List篇
一、Vector和ArrayList、LinkedList联系和区别,分别的使用场景 ArrayList:底层是数组实现,线程不安全,查询和修改非常快,但是增加和删除慢 LinkedList: 底层是双向链表,线程不安全,查询和修改…...
浙江大学:DeepSeek行业应用案例集(153页)(文末可下载PDF)
浙江大学:DeepSeek行业应用案例集(153页)(文末可下载PDF) 全文链接:浙江大学:DeepSeek行业应用案例集(153页)(文末可下载PDF) | AI探金 全文链接&…...
【 IEEE出版 | 快速稳定EI检索 | 往届已EI检索】2025年储能及能源转换国际学术会议(ESEC 2025)
重要信息 主会官网:www.net-lc.net 【论文【】投稿】 会议时间:2025年5月9-11日 会议地点:中国-杭州 截稿时间:见官网 提交检索:IEEE Xplore, EI Compendex, Scopus 主会NET-LC 2025已进入IEEE 会议官方列表!&am…...
电路原理(电容 集成电路NE555)
电容 1.特性:充放电,隔直流,通交流 2.电容是通过聚集正负电荷来存储电能的 3.电容充放电过程可等效为导通回路 4.多电容并联可以把容量叠加,但是多电容串联就不会,只会叠加电容的耐压值。 6.电容充放电时相当于通路&a…...
记录小白使用 Cursor 开发第一个微信小程序(一):注册账号及下载工具(250308)
文章目录 记录小白使用 Cursor 开发第一个微信小程序(一):注册账号及下载工具(250308)一、微信小程序注册摘要1.1 注册流程要点 二、小程序发布流程三、下载工具 记录小白使用 Cursor 开发第一个微信小程序(…...
哪些业务场景更适合用MongoDB?何时比MySQL/PostgreSQL好用?
哪些业务场景更适合用MongoDB?何时比MySQL/PostgreSQL好用? 就像淘宝的个性化推荐需要灵活调整商品标签,MongoDB这种"变形金刚"式的数据库,在处理以下三类中国特色业务场景时更具优势: 一、动态数据就像&q…...
【从零开始学习计算机科学】计算机组成原理(二)信息表示与编码
【从零开始学习计算机科学】计算机组成原理(二)信息表示与编码 信息表示与编码进位计数制十进制(Decimal)二进制(Binary)十六进制(Hexadecimal)进位计数制之间的转换常用的信息分类与表示定点表示无符号数的编码正整数的表示原码表示法定点小数的原码表示定点整数的原码…...
【从零开始学习计算机科学】操作系统(五)处理器调度
【从零开始学习计算机科学】操作系统(五)处理器调度 处理器调度一些简单的短程调度算法的思路先来先服务(First-Come-First-Served,FCFS)优先级调度及其变种最短作业优先调度算法(SJF)--非抢占式最短作业优先调度算法(SJF)--抢占式最高响应比优先调度算法轮转调度算法…...
Flink之水印(watermark)的补充理解
水印(Watermark):用于事件时间处理,标记数据流的进度,解决乱序和延迟问题,触发窗口计算 一、Flink 水印的作用 处理乱序事件 水印(Watermark)是 Flink 用于处理事件时间&…...
数据结构全解析:从线性到非线性,优缺点与应用场景深度剖析
1. 线性数据结构 (1)数组(Array)(适合静态数据) 优点: 随机访问高效:通过索引可以直接访问元素,时间复杂度为 O(1)。 内存连续:数组在内存中是连续存储的&…...
《使用 Python Flask + MySQL + ECharts 构建销售数据看板》实战案例笔记
《使用 Python Flask + MySQL + ECharts 构建销售数据看板》实战案例笔记 技术栈说明 后端:Python 3.10 + Flask 框架数据库:MySQL前端:ECharts 5.4 + HTML/CSS数据可视化:柱状图 / 折线图 / 饼图 / 雷达图项目结构 project/ ├── server.py # 后端服务 └──…...
StringBuilder和StringJoiner的运用
package test12; import java.util.Scanner; import java.util.StringJoiner;public class Test { public static void main(String[] args) {/* String str "你玩的真好,下次别玩了,TMD,CNM";String[] arr {"TMD", &…...
科技创新:改变生活的力量与未来趋势
人工智能在智能客服中的应用越来越普遍。它改变了传统的客服模式。AI可以快速回答用户的问题,提高了客服效率和服务质量。 首先,人工智能能够处理大量信息。智能客服可以在几秒钟内回应客户的请求。这比人工客服快得多。客户不需要等待很久就能得到答案…...
Maven指定JDK
在使用 Maven 管理 Java 项目时,有时需要指定使用特定的 JDK 版本。这通常是因为项目需要与特定版本的 JDK 兼容,或者在不同的开发环境中需要确保使用正确的 JDK 版本。通常来说在IDEA工具中设置了正确的JDK版本,使用IDEA编译也不会有任何异常…...
Jenkins持续集成与Web前端、SpringBoot项目的部署
Jenkins是一个开源的持续集成(Continuous Integration, CI)和持续交付(Continuous Delivery, CD)工具,广泛应用于软件开发过程中。它基于Java开发,旨在提供一个开放易用的软件平台,帮助软件项…...
如何使用Opentelemetry+jaeger对Go与Java项目实现分布式链路追踪
本文介绍![如何使用Opentelemetryjaeger实现分布式链路追踪] 关于opentelemetry的介绍可以看下面的文章 https://blog.csdn.net/qq_62368250/article/details/143516314本文中相关图片以及源代码地址 https://github.com/wuchenyanghaoshuai/others/blob/main/step39/README.…...
LabVIEW闭环控制系统硬件选型与实时性能
在LabVIEW闭环控制系统的开发中,硬件选型直接影响系统的实时性、精度与稳定性。需综合考虑数据采集速度(采样率、接口带宽)、计算延迟(算法复杂度、处理器性能)、输出响应时间(执行器延迟、控制周期&#x…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
