当前位置: 首页 > news >正文

【机器学习实战】七、梯度下降

梯度下降

一、线性回归

线性回归算法推导过程可以基于最小二乘法直接求解,但这并不是机器学习的思想,由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。

1.初始化
import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
2.回归方程

在这里插入图片描述

import numpy as np
X = 2*np.random.rand(100,1)
y = 4+ 3*X +np.random.randn(100,1)
plt.plot(X,y,'b.')
plt.xlabel('X_1')
plt.ylabel('y')
plt.axis([0,2,0,15])
plt.show()

在这里插入图片描述

X_b = np.c_[np.ones((100,1)),X]
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
print(theta_best) 
# 输出 :
array([[4.21509616],[2.77011339]])
X_new = np.array([[0],[2]])
X_new_b = np.c_[np.ones((2,1)),X_new]
y_predict = X_new_b.dot(theta_best)
print(y_predict)
# 输出:
array([[4.21509616],[9.75532293]])
plt.plot(X_new,y_predict,'r--')
plt.plot(X,y,'b.')
plt.axis([0,2,0,15])
plt.show()

在这里插入图片描述

二、调用sklearn API

sklearnAPI官网: https://scikit-learn.org/stable/modules/classes.html

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
print (lin_reg.coef_)
print (lin_reg.intercept_)
# 
[[2.77011339]]
[4.21509616]

三、梯度下降

在这里插入图片描述
当步长较小时,训练次数较多;
在这里插入图片描述
当步长较大时,波动大;
在这里插入图片描述
学习率应当尽可能小,随着迭代的进行应当越来越小。
在这里插入图片描述
在这里插入图片描述

1.批量梯度下降
eta = 0.1 #学习率
n_iterations = 1000 # 迭代次数
m = 100
theta = np.random.randn(2,1) # 随机初始化参数theta
for iteration in range(n_iterations):gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradients
theta
# 
array([[4.21509616],[2.77011339]])
X_new_b.dot(theta)
#
array([[4.21509616],[9.75532293]])
theta_path_bgd = []
def plot_gradient_descent(theta,eta,theta_path = None):m = len(X_b)plt.plot(X,y,'b.')n_iterations = 1000for iteration in range(n_iterations):y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'b-')gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel('X_1')plt.axis([0,2,0,15])plt.title('eta = {}'.format(eta))
theta = np.random.randn(2,1)plt.figure(figsize=(10,4))
plt.subplot(131)
plot_gradient_descent(theta,eta = 0.02)
plt.subplot(132)
plot_gradient_descent(theta,eta = 0.1,theta_path=theta_path_bgd)
plt.subplot(133)
plot_gradient_descent(theta,eta = 0.5)
plt.show()

在这里插入图片描述

2.随机梯度下降

在这里插入图片描述

theta_path_sgd=[]
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0 = 5
t1 = 50def learning_schedule(t):return t0/(t1+t)
theta = np.random.randn(2,1)for epoch in range(n_epochs):for i in range(m):if epoch < 10 and i<10:y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'r-')random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(epoch*m+i)theta = theta-eta*gradientstheta_path_sgd.append(theta)plt.plot(X,y,'b.')
plt.axis([0,2,0,15])   
plt.show()

在这里插入图片描述

3.MiniBatch梯度下降
theta_path_mgd=[]
n_epochs = 50
minibatch = 16
theta = np.random.randn(2,1)
t0, t1 = 200, 1000
def learning_schedule(t):return t0 / (t + t1)
np.random.seed(42)
t = 0
for epoch in range(n_epochs):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0,m,minibatch):t+=1xi = X_b_shuffled[i:i+minibatch]yi = y_shuffled[i:i+minibatch]gradients = 2/minibatch* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(t)theta = theta-eta*gradientstheta_path_mgd.append(theta)
theta 
# 
array([[4.25490684],[2.80388785]])

四、3种策略的对比实验

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)
plt.figure(figsize=(12,6))
plt.plot(theta_path_sgd[:,0],theta_path_sgd[:,1],'r-s',linewidth=1,label='SGD')
plt.plot(theta_path_mgd[:,0],theta_path_mgd[:,1],'g-+',linewidth=2,label='MINIGD')
plt.plot(theta_path_bgd[:,0],theta_path_bgd[:,1],'b-o',linewidth=3,label='BGD')
plt.legend(loc='upper left')
plt.axis([3.5,4.5,2.0,4.0])
plt.show()

在这里插入图片描述
实际当中用minibatch比较多,一般情况下选择batch数量应当越大越好。

相关文章:

【机器学习实战】七、梯度下降

梯度下降 一、线性回归 线性回归算法推导过程可以基于最小二乘法直接求解&#xff0c;但这并不是机器学习的思想&#xff0c;由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。 1.初始化 import numpy as np import os %matplotlib inline import matplotli…...

什么是极速文件传输,极速文件传输如何进行大文件传输

当谈到大文件传输时&#xff0c;人们总是担心大数据文件的大小以及将它们从一个位置交换到另一个位置需要多长时间。由于数据捕获高分辨率视频和图像的日益复杂&#xff0c;文件的大小不断增加。数据工作流在地理上变得越来越分散。在一个位置生成的文件在其他位置处理或使用。…...

Spring Boot 日志

目录 1.概述 2.切换日志实现 3.使用 3.1.日志级别 3.3.日志离线 3.4.详细定制 1.概述 由一些历史原因&#xff0c;JAVA领域存在有很多日志框架&#xff0c;如Log4j、Logback、log4j2。 log4j是Java日志框架的元老&#xff0c;在log4j被Apache Foundation收入门下之后&a…...

好用的研发管理看板工具有哪些?10款主流看板管理软件盘点

10大企业看板工具软件&#xff1a;1.软件开发项目看板 PingCode&#xff1b;2.通用看板软件 Worktile&#xff1b;3.开源看板软件 Wekan&#xff1b;4.免费看板软件 Trello&#xff1b;5.个人和小团队的看板软件 Todoist &#xff1b;6.开源免费看 Kanboard&#xff1b;7.面向个…...

【软考系统架构设计师】2022下案例分析历年真题

【软考系统架构设计师】2022下案例分析历年真题 【软考系统架构设计师】2022下案例分析历年真题【软考系统架构设计师】2022下案例分析历年真题2022下案例分析历年真题第一题&#xff08;25分&#xff09;2022下案例分析历年真题第二题&#xff08;25分&#xff09;2022下案例分…...

Java skill - @JsonAlias 和 @JsonProperty

Java skill - JsonAlias 和 JsonPropertyJava skill系列目录&#xff1a;JsonAlias 和 JsonProperty使用 JsonProperty 的麻烦场景&#xff1a;使用 JsonAlias 应对麻烦场景&#xff1a;Java skill系列目录&#xff1a; 【Java skill - 统计耗时用StopWatch】 【Java skill - …...

【实际开发18】- 静态 3

目录 1. 调试与评估 2. 单元测试的管理 1. 单元测试的文档 3. 系统集成的模式与方法 1. 集成测试前的准备 2. 集成测试的模式 3. 大棒集成方法 ( Big-bang Integration) 4. 自顶向下和自底向上集成方法 1. 自顶向下法 ( Top-down Integration ) 2. 自底向上法 ( Bott…...

【swagger2】开发api文档

文章目录一、swagger2 简介背景Open API ???swagger2的作用swagger2常用工具组件&#xff1a;二、Springfox三、springBoot使用swagger2&#xff08;简单示例&#xff09;四、Swagger-UI使用五、配置文件1、配置类&#xff1a;给docket上下文配置api描述信息2、配置类&#…...

Github 上如何提交 pull request

什么是复刻&#xff08;forking&#xff09;? 我们可以通过复刻操作将喜爱的仓库保存自己的Github账户中&#xff0c;以便独立地对其进行操作。 通过复刻&#xff0c;我们可以得到包含完整版本历史的目标仓库的实例&#xff0c;之后可以对复刻得到的仓库进行任意操作而不会影响…...

Redis面试知识

概述 Redis 是速度非常快的非关系型(NoSQL)内存键值数据库,可以存储键和五种不同类型的值之间的映射。 键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。 Redis 支持很多特性,例如将内存中的数据持久化到硬盘中,使用复制来扩展读性能…...

Spring面试重点(四)——Spring事务

Spring事务 事务的方式 spring中使用事务有两种方式&#xff0c;一种是编程式事务&#xff0c;一种是声明式事务。编程式事务推荐使用TransactionTemplate&#xff0c;实现TransactionCallback接口&#xff0c;需要编码实现&#xff1b;声明式事务只需要在函数增加注解Transa…...

♡ — MySQL 存储引擎

MySQL 存储引擎架构 MySQL 存储引擎采用的是插件式架构&#xff0c;支持多种存储引擎&#xff0c;我们甚至可以为不同的数据库设置不同的存储引擎以适应不同场景的需要&#xff1b;存储引擎是基于表的&#xff0c;而不是数据库。 MyISAM 和 InnoDB 的区别 MySQL 5.5 之前&am…...

大数据技术架构(组件)34——Spark:Spark SQL--Optimize

2.2.3、Optimize2.2.3.1、SQL3.3.1.1、RB1、Join选择在Hadoop中&#xff0c;MR使用DistributedCache来实现mapJoin。即将小文件存放到DistributedCache中&#xff0c;然后分发到各个Task上&#xff0c;并加载到内存中&#xff0c;类似于Map结构&#xff0c;然后借助于Mapper的迭…...

Zookeeper实现分布式锁

文章目录ZK节点类型watch监听机制Zookeeper实现分布式锁锁原理创建锁的过程释放锁的过程ZK锁的种类代码实现Zookeeper是一个开源的分布式协调服务&#xff0c;是一个典型的分布式数据一致性解决方案。 分布式应用程序可以基于Zookeeper实现诸如数据发布/订阅&#xff0c;负载均…...

MFC 添加重新启动管理器支持

重启管理器是添加到 Visual Studio for Windows Vista 或更高版本操作系统的功能 如果发生意外关闭或重启&#xff0c;重新启动管理器将为你的应用程序添加支持。 重新启动管理器的行为取决于应用程序的类型。 如果你的应用程序是文档编辑器&#xff0c;则重新启动管理器让应用…...

一文带你深刻的进入Python,并且了解Python的优缺点

最近几年Python被吹的神乎其神&#xff0c;很多同学都不清楚Python到底能干什么&#xff1f;就盲目去学习Python,今天我就Python的应用领域来简单盘点一下&#xff0c;让想学习Python 的同学找对方向不迷茫。 2. Python 的特点 这里就谈谈自己的看法&#xff0c;首先 Python是…...

别具一格,原创唯美浪漫情人节表白专辑,(复制就可用)(html5,css3,svg)表白爱心代码(4)

别具一格,独此一家&#xff0c;原创唯美浪漫情人节表白专辑 不一样的惊喜哦~&#xff01;&#xff08;html5,css3,svg)表白爱心代码&#xff08;复制就可用&#xff09;&#xff08;4&#xff09; 目录 款式四&#xff1a;时光的记忆款 1、拷贝完整源代码 2、更新时光盒所…...

编译原理—翻译方案、属性栈代码

系列文章戳这里&#x1f447; 什么是上下文无关文法、最左推导和最右推导如何判断二义文法及消除文法二义性何时需要消除左递归什么是句柄、什么是自上而下、自下而上分析什么是LL(1)、LR(0)、LR(1)文法、LR分析表LR(0)、SLR(1)、LR(1)、LALR(1)文法之间的关系编译原理第三章习…...

链表

一、从尾到头打印链表题目&#xff1a;输入一个链表&#xff0c;按链表从尾到头的顺序返回一个ArrayList。解题思路&#xff1a;使用栈作为中转&#xff0c;可以实现倒置打印classSolution { public:vector<int> printListFromTailToHead(ListNode* head){//使用栈完成中…...

CSS 样式优先级

CSS 样式优先级决定了最终呈现在浏览器中的样式是哪一组样式&#xff0c;在多组样式中有冲突时&#xff0c;最终呈现在浏览器中的样式是具有最高优先级的样式。 CSS 样式优先级顺序如下&#xff1a; 内联样式 > 内部样式 > 外部样式 !important > 内联样式 > ID…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...