当前位置: 首页 > news >正文

【机器学习实战】七、梯度下降

梯度下降

一、线性回归

线性回归算法推导过程可以基于最小二乘法直接求解,但这并不是机器学习的思想,由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。

1.初始化
import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
2.回归方程

在这里插入图片描述

import numpy as np
X = 2*np.random.rand(100,1)
y = 4+ 3*X +np.random.randn(100,1)
plt.plot(X,y,'b.')
plt.xlabel('X_1')
plt.ylabel('y')
plt.axis([0,2,0,15])
plt.show()

在这里插入图片描述

X_b = np.c_[np.ones((100,1)),X]
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
print(theta_best) 
# 输出 :
array([[4.21509616],[2.77011339]])
X_new = np.array([[0],[2]])
X_new_b = np.c_[np.ones((2,1)),X_new]
y_predict = X_new_b.dot(theta_best)
print(y_predict)
# 输出:
array([[4.21509616],[9.75532293]])
plt.plot(X_new,y_predict,'r--')
plt.plot(X,y,'b.')
plt.axis([0,2,0,15])
plt.show()

在这里插入图片描述

二、调用sklearn API

sklearnAPI官网: https://scikit-learn.org/stable/modules/classes.html

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
print (lin_reg.coef_)
print (lin_reg.intercept_)
# 
[[2.77011339]]
[4.21509616]

三、梯度下降

在这里插入图片描述
当步长较小时,训练次数较多;
在这里插入图片描述
当步长较大时,波动大;
在这里插入图片描述
学习率应当尽可能小,随着迭代的进行应当越来越小。
在这里插入图片描述
在这里插入图片描述

1.批量梯度下降
eta = 0.1 #学习率
n_iterations = 1000 # 迭代次数
m = 100
theta = np.random.randn(2,1) # 随机初始化参数theta
for iteration in range(n_iterations):gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradients
theta
# 
array([[4.21509616],[2.77011339]])
X_new_b.dot(theta)
#
array([[4.21509616],[9.75532293]])
theta_path_bgd = []
def plot_gradient_descent(theta,eta,theta_path = None):m = len(X_b)plt.plot(X,y,'b.')n_iterations = 1000for iteration in range(n_iterations):y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'b-')gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel('X_1')plt.axis([0,2,0,15])plt.title('eta = {}'.format(eta))
theta = np.random.randn(2,1)plt.figure(figsize=(10,4))
plt.subplot(131)
plot_gradient_descent(theta,eta = 0.02)
plt.subplot(132)
plot_gradient_descent(theta,eta = 0.1,theta_path=theta_path_bgd)
plt.subplot(133)
plot_gradient_descent(theta,eta = 0.5)
plt.show()

在这里插入图片描述

2.随机梯度下降

在这里插入图片描述

theta_path_sgd=[]
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0 = 5
t1 = 50def learning_schedule(t):return t0/(t1+t)
theta = np.random.randn(2,1)for epoch in range(n_epochs):for i in range(m):if epoch < 10 and i<10:y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'r-')random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(epoch*m+i)theta = theta-eta*gradientstheta_path_sgd.append(theta)plt.plot(X,y,'b.')
plt.axis([0,2,0,15])   
plt.show()

在这里插入图片描述

3.MiniBatch梯度下降
theta_path_mgd=[]
n_epochs = 50
minibatch = 16
theta = np.random.randn(2,1)
t0, t1 = 200, 1000
def learning_schedule(t):return t0 / (t + t1)
np.random.seed(42)
t = 0
for epoch in range(n_epochs):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0,m,minibatch):t+=1xi = X_b_shuffled[i:i+minibatch]yi = y_shuffled[i:i+minibatch]gradients = 2/minibatch* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(t)theta = theta-eta*gradientstheta_path_mgd.append(theta)
theta 
# 
array([[4.25490684],[2.80388785]])

四、3种策略的对比实验

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)
plt.figure(figsize=(12,6))
plt.plot(theta_path_sgd[:,0],theta_path_sgd[:,1],'r-s',linewidth=1,label='SGD')
plt.plot(theta_path_mgd[:,0],theta_path_mgd[:,1],'g-+',linewidth=2,label='MINIGD')
plt.plot(theta_path_bgd[:,0],theta_path_bgd[:,1],'b-o',linewidth=3,label='BGD')
plt.legend(loc='upper left')
plt.axis([3.5,4.5,2.0,4.0])
plt.show()

在这里插入图片描述
实际当中用minibatch比较多,一般情况下选择batch数量应当越大越好。

相关文章:

【机器学习实战】七、梯度下降

梯度下降 一、线性回归 线性回归算法推导过程可以基于最小二乘法直接求解&#xff0c;但这并不是机器学习的思想&#xff0c;由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。 1.初始化 import numpy as np import os %matplotlib inline import matplotli…...

什么是极速文件传输,极速文件传输如何进行大文件传输

当谈到大文件传输时&#xff0c;人们总是担心大数据文件的大小以及将它们从一个位置交换到另一个位置需要多长时间。由于数据捕获高分辨率视频和图像的日益复杂&#xff0c;文件的大小不断增加。数据工作流在地理上变得越来越分散。在一个位置生成的文件在其他位置处理或使用。…...

Spring Boot 日志

目录 1.概述 2.切换日志实现 3.使用 3.1.日志级别 3.3.日志离线 3.4.详细定制 1.概述 由一些历史原因&#xff0c;JAVA领域存在有很多日志框架&#xff0c;如Log4j、Logback、log4j2。 log4j是Java日志框架的元老&#xff0c;在log4j被Apache Foundation收入门下之后&a…...

好用的研发管理看板工具有哪些?10款主流看板管理软件盘点

10大企业看板工具软件&#xff1a;1.软件开发项目看板 PingCode&#xff1b;2.通用看板软件 Worktile&#xff1b;3.开源看板软件 Wekan&#xff1b;4.免费看板软件 Trello&#xff1b;5.个人和小团队的看板软件 Todoist &#xff1b;6.开源免费看 Kanboard&#xff1b;7.面向个…...

【软考系统架构设计师】2022下案例分析历年真题

【软考系统架构设计师】2022下案例分析历年真题 【软考系统架构设计师】2022下案例分析历年真题【软考系统架构设计师】2022下案例分析历年真题2022下案例分析历年真题第一题&#xff08;25分&#xff09;2022下案例分析历年真题第二题&#xff08;25分&#xff09;2022下案例分…...

Java skill - @JsonAlias 和 @JsonProperty

Java skill - JsonAlias 和 JsonPropertyJava skill系列目录&#xff1a;JsonAlias 和 JsonProperty使用 JsonProperty 的麻烦场景&#xff1a;使用 JsonAlias 应对麻烦场景&#xff1a;Java skill系列目录&#xff1a; 【Java skill - 统计耗时用StopWatch】 【Java skill - …...

【实际开发18】- 静态 3

目录 1. 调试与评估 2. 单元测试的管理 1. 单元测试的文档 3. 系统集成的模式与方法 1. 集成测试前的准备 2. 集成测试的模式 3. 大棒集成方法 ( Big-bang Integration) 4. 自顶向下和自底向上集成方法 1. 自顶向下法 ( Top-down Integration ) 2. 自底向上法 ( Bott…...

【swagger2】开发api文档

文章目录一、swagger2 简介背景Open API ???swagger2的作用swagger2常用工具组件&#xff1a;二、Springfox三、springBoot使用swagger2&#xff08;简单示例&#xff09;四、Swagger-UI使用五、配置文件1、配置类&#xff1a;给docket上下文配置api描述信息2、配置类&#…...

Github 上如何提交 pull request

什么是复刻&#xff08;forking&#xff09;? 我们可以通过复刻操作将喜爱的仓库保存自己的Github账户中&#xff0c;以便独立地对其进行操作。 通过复刻&#xff0c;我们可以得到包含完整版本历史的目标仓库的实例&#xff0c;之后可以对复刻得到的仓库进行任意操作而不会影响…...

Redis面试知识

概述 Redis 是速度非常快的非关系型(NoSQL)内存键值数据库,可以存储键和五种不同类型的值之间的映射。 键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。 Redis 支持很多特性,例如将内存中的数据持久化到硬盘中,使用复制来扩展读性能…...

Spring面试重点(四)——Spring事务

Spring事务 事务的方式 spring中使用事务有两种方式&#xff0c;一种是编程式事务&#xff0c;一种是声明式事务。编程式事务推荐使用TransactionTemplate&#xff0c;实现TransactionCallback接口&#xff0c;需要编码实现&#xff1b;声明式事务只需要在函数增加注解Transa…...

♡ — MySQL 存储引擎

MySQL 存储引擎架构 MySQL 存储引擎采用的是插件式架构&#xff0c;支持多种存储引擎&#xff0c;我们甚至可以为不同的数据库设置不同的存储引擎以适应不同场景的需要&#xff1b;存储引擎是基于表的&#xff0c;而不是数据库。 MyISAM 和 InnoDB 的区别 MySQL 5.5 之前&am…...

大数据技术架构(组件)34——Spark:Spark SQL--Optimize

2.2.3、Optimize2.2.3.1、SQL3.3.1.1、RB1、Join选择在Hadoop中&#xff0c;MR使用DistributedCache来实现mapJoin。即将小文件存放到DistributedCache中&#xff0c;然后分发到各个Task上&#xff0c;并加载到内存中&#xff0c;类似于Map结构&#xff0c;然后借助于Mapper的迭…...

Zookeeper实现分布式锁

文章目录ZK节点类型watch监听机制Zookeeper实现分布式锁锁原理创建锁的过程释放锁的过程ZK锁的种类代码实现Zookeeper是一个开源的分布式协调服务&#xff0c;是一个典型的分布式数据一致性解决方案。 分布式应用程序可以基于Zookeeper实现诸如数据发布/订阅&#xff0c;负载均…...

MFC 添加重新启动管理器支持

重启管理器是添加到 Visual Studio for Windows Vista 或更高版本操作系统的功能 如果发生意外关闭或重启&#xff0c;重新启动管理器将为你的应用程序添加支持。 重新启动管理器的行为取决于应用程序的类型。 如果你的应用程序是文档编辑器&#xff0c;则重新启动管理器让应用…...

一文带你深刻的进入Python,并且了解Python的优缺点

最近几年Python被吹的神乎其神&#xff0c;很多同学都不清楚Python到底能干什么&#xff1f;就盲目去学习Python,今天我就Python的应用领域来简单盘点一下&#xff0c;让想学习Python 的同学找对方向不迷茫。 2. Python 的特点 这里就谈谈自己的看法&#xff0c;首先 Python是…...

别具一格,原创唯美浪漫情人节表白专辑,(复制就可用)(html5,css3,svg)表白爱心代码(4)

别具一格,独此一家&#xff0c;原创唯美浪漫情人节表白专辑 不一样的惊喜哦~&#xff01;&#xff08;html5,css3,svg)表白爱心代码&#xff08;复制就可用&#xff09;&#xff08;4&#xff09; 目录 款式四&#xff1a;时光的记忆款 1、拷贝完整源代码 2、更新时光盒所…...

编译原理—翻译方案、属性栈代码

系列文章戳这里&#x1f447; 什么是上下文无关文法、最左推导和最右推导如何判断二义文法及消除文法二义性何时需要消除左递归什么是句柄、什么是自上而下、自下而上分析什么是LL(1)、LR(0)、LR(1)文法、LR分析表LR(0)、SLR(1)、LR(1)、LALR(1)文法之间的关系编译原理第三章习…...

链表

一、从尾到头打印链表题目&#xff1a;输入一个链表&#xff0c;按链表从尾到头的顺序返回一个ArrayList。解题思路&#xff1a;使用栈作为中转&#xff0c;可以实现倒置打印classSolution { public:vector<int> printListFromTailToHead(ListNode* head){//使用栈完成中…...

CSS 样式优先级

CSS 样式优先级决定了最终呈现在浏览器中的样式是哪一组样式&#xff0c;在多组样式中有冲突时&#xff0c;最终呈现在浏览器中的样式是具有最高优先级的样式。 CSS 样式优先级顺序如下&#xff1a; 内联样式 > 内部样式 > 外部样式 !important > 内联样式 > ID…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目&#xff0c;集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...

SQLSERVER-DB操作记录

在SQL Server中&#xff0c;将查询结果放入一张新表可以通过几种方法实现。 方法1&#xff1a;使用SELECT INTO语句 SELECT INTO 语句可以直接将查询结果作为一个新表创建出来。这个新表的结构&#xff08;包括列名和数据类型&#xff09;将与查询结果匹配。 SELECT * INTO 新…...

5. TypeScript 类型缩小

在 TypeScript 中&#xff0c;类型缩小&#xff08;Narrowing&#xff09;是指根据特定条件将变量的类型细化为更具体的过程。它帮助开发者编写更精确、更准确的代码&#xff0c;确保变量在运行时只以符合其类型的方式进行处理。 一、instanceof 缩小类型 TypeScript 中的 in…...