【机器学习实战】七、梯度下降
梯度下降
一、线性回归
线性回归算法推导过程可以基于最小二乘法直接求解,但这并不是机器学习的思想,由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。
1.初始化
import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings
warnings.filterwarnings('ignore')
np.random.seed(42)
2.回归方程

import numpy as np
X = 2*np.random.rand(100,1)
y = 4+ 3*X +np.random.randn(100,1)
plt.plot(X,y,'b.')
plt.xlabel('X_1')
plt.ylabel('y')
plt.axis([0,2,0,15])
plt.show()

X_b = np.c_[np.ones((100,1)),X]
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
print(theta_best)
# 输出 :
array([[4.21509616],[2.77011339]])
X_new = np.array([[0],[2]])
X_new_b = np.c_[np.ones((2,1)),X_new]
y_predict = X_new_b.dot(theta_best)
print(y_predict)
# 输出:
array([[4.21509616],[9.75532293]])
plt.plot(X_new,y_predict,'r--')
plt.plot(X,y,'b.')
plt.axis([0,2,0,15])
plt.show()

二、调用sklearn API
sklearnAPI官网: https://scikit-learn.org/stable/modules/classes.html
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
print (lin_reg.coef_)
print (lin_reg.intercept_)
#
[[2.77011339]]
[4.21509616]
三、梯度下降

当步长较小时,训练次数较多;

当步长较大时,波动大;

学习率应当尽可能小,随着迭代的进行应当越来越小。


1.批量梯度下降
eta = 0.1 #学习率
n_iterations = 1000 # 迭代次数
m = 100
theta = np.random.randn(2,1) # 随机初始化参数theta
for iteration in range(n_iterations):gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradients
theta
#
array([[4.21509616],[2.77011339]])
X_new_b.dot(theta)
#
array([[4.21509616],[9.75532293]])
theta_path_bgd = []
def plot_gradient_descent(theta,eta,theta_path = None):m = len(X_b)plt.plot(X,y,'b.')n_iterations = 1000for iteration in range(n_iterations):y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'b-')gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)theta = theta - eta*gradientsif theta_path is not None:theta_path.append(theta)plt.xlabel('X_1')plt.axis([0,2,0,15])plt.title('eta = {}'.format(eta))
theta = np.random.randn(2,1)plt.figure(figsize=(10,4))
plt.subplot(131)
plot_gradient_descent(theta,eta = 0.02)
plt.subplot(132)
plot_gradient_descent(theta,eta = 0.1,theta_path=theta_path_bgd)
plt.subplot(133)
plot_gradient_descent(theta,eta = 0.5)
plt.show()

2.随机梯度下降

theta_path_sgd=[]
m = len(X_b)
np.random.seed(42)
n_epochs = 50
t0 = 5
t1 = 50def learning_schedule(t):return t0/(t1+t)
theta = np.random.randn(2,1)for epoch in range(n_epochs):for i in range(m):if epoch < 10 and i<10:y_predict = X_new_b.dot(theta)plt.plot(X_new,y_predict,'r-')random_index = np.random.randint(m)xi = X_b[random_index:random_index+1]yi = y[random_index:random_index+1]gradients = 2* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(epoch*m+i)theta = theta-eta*gradientstheta_path_sgd.append(theta)plt.plot(X,y,'b.')
plt.axis([0,2,0,15])
plt.show()

3.MiniBatch梯度下降
theta_path_mgd=[]
n_epochs = 50
minibatch = 16
theta = np.random.randn(2,1)
t0, t1 = 200, 1000
def learning_schedule(t):return t0 / (t + t1)
np.random.seed(42)
t = 0
for epoch in range(n_epochs):shuffled_indices = np.random.permutation(m)X_b_shuffled = X_b[shuffled_indices]y_shuffled = y[shuffled_indices]for i in range(0,m,minibatch):t+=1xi = X_b_shuffled[i:i+minibatch]yi = y_shuffled[i:i+minibatch]gradients = 2/minibatch* xi.T.dot(xi.dot(theta)-yi)eta = learning_schedule(t)theta = theta-eta*gradientstheta_path_mgd.append(theta)
theta
#
array([[4.25490684],[2.80388785]])
四、3种策略的对比实验
theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)
plt.figure(figsize=(12,6))
plt.plot(theta_path_sgd[:,0],theta_path_sgd[:,1],'r-s',linewidth=1,label='SGD')
plt.plot(theta_path_mgd[:,0],theta_path_mgd[:,1],'g-+',linewidth=2,label='MINIGD')
plt.plot(theta_path_bgd[:,0],theta_path_bgd[:,1],'b-o',linewidth=3,label='BGD')
plt.legend(loc='upper left')
plt.axis([3.5,4.5,2.0,4.0])
plt.show()

实际当中用minibatch比较多,一般情况下选择batch数量应当越大越好。
相关文章:
【机器学习实战】七、梯度下降
梯度下降 一、线性回归 线性回归算法推导过程可以基于最小二乘法直接求解,但这并不是机器学习的思想,由此引入了梯度下降方法。本文讲解其中每一步流程与实验对比分析。 1.初始化 import numpy as np import os %matplotlib inline import matplotli…...
什么是极速文件传输,极速文件传输如何进行大文件传输
当谈到大文件传输时,人们总是担心大数据文件的大小以及将它们从一个位置交换到另一个位置需要多长时间。由于数据捕获高分辨率视频和图像的日益复杂,文件的大小不断增加。数据工作流在地理上变得越来越分散。在一个位置生成的文件在其他位置处理或使用。…...
Spring Boot 日志
目录 1.概述 2.切换日志实现 3.使用 3.1.日志级别 3.3.日志离线 3.4.详细定制 1.概述 由一些历史原因,JAVA领域存在有很多日志框架,如Log4j、Logback、log4j2。 log4j是Java日志框架的元老,在log4j被Apache Foundation收入门下之后&a…...
好用的研发管理看板工具有哪些?10款主流看板管理软件盘点
10大企业看板工具软件:1.软件开发项目看板 PingCode;2.通用看板软件 Worktile;3.开源看板软件 Wekan;4.免费看板软件 Trello;5.个人和小团队的看板软件 Todoist ;6.开源免费看 Kanboard;7.面向个…...
【软考系统架构设计师】2022下案例分析历年真题
【软考系统架构设计师】2022下案例分析历年真题 【软考系统架构设计师】2022下案例分析历年真题【软考系统架构设计师】2022下案例分析历年真题2022下案例分析历年真题第一题(25分)2022下案例分析历年真题第二题(25分)2022下案例分…...
Java skill - @JsonAlias 和 @JsonProperty
Java skill - JsonAlias 和 JsonPropertyJava skill系列目录:JsonAlias 和 JsonProperty使用 JsonProperty 的麻烦场景:使用 JsonAlias 应对麻烦场景:Java skill系列目录: 【Java skill - 统计耗时用StopWatch】 【Java skill - …...
【实际开发18】- 静态 3
目录 1. 调试与评估 2. 单元测试的管理 1. 单元测试的文档 3. 系统集成的模式与方法 1. 集成测试前的准备 2. 集成测试的模式 3. 大棒集成方法 ( Big-bang Integration) 4. 自顶向下和自底向上集成方法 1. 自顶向下法 ( Top-down Integration ) 2. 自底向上法 ( Bott…...
【swagger2】开发api文档
文章目录一、swagger2 简介背景Open API ???swagger2的作用swagger2常用工具组件:二、Springfox三、springBoot使用swagger2(简单示例)四、Swagger-UI使用五、配置文件1、配置类:给docket上下文配置api描述信息2、配置类&#…...
Github 上如何提交 pull request
什么是复刻(forking)? 我们可以通过复刻操作将喜爱的仓库保存自己的Github账户中,以便独立地对其进行操作。 通过复刻,我们可以得到包含完整版本历史的目标仓库的实例,之后可以对复刻得到的仓库进行任意操作而不会影响…...
Redis面试知识
概述 Redis 是速度非常快的非关系型(NoSQL)内存键值数据库,可以存储键和五种不同类型的值之间的映射。 键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。 Redis 支持很多特性,例如将内存中的数据持久化到硬盘中,使用复制来扩展读性能…...
Spring面试重点(四)——Spring事务
Spring事务 事务的方式 spring中使用事务有两种方式,一种是编程式事务,一种是声明式事务。编程式事务推荐使用TransactionTemplate,实现TransactionCallback接口,需要编码实现;声明式事务只需要在函数增加注解Transa…...
♡ — MySQL 存储引擎
MySQL 存储引擎架构 MySQL 存储引擎采用的是插件式架构,支持多种存储引擎,我们甚至可以为不同的数据库设置不同的存储引擎以适应不同场景的需要;存储引擎是基于表的,而不是数据库。 MyISAM 和 InnoDB 的区别 MySQL 5.5 之前&am…...
大数据技术架构(组件)34——Spark:Spark SQL--Optimize
2.2.3、Optimize2.2.3.1、SQL3.3.1.1、RB1、Join选择在Hadoop中,MR使用DistributedCache来实现mapJoin。即将小文件存放到DistributedCache中,然后分发到各个Task上,并加载到内存中,类似于Map结构,然后借助于Mapper的迭…...
Zookeeper实现分布式锁
文章目录ZK节点类型watch监听机制Zookeeper实现分布式锁锁原理创建锁的过程释放锁的过程ZK锁的种类代码实现Zookeeper是一个开源的分布式协调服务,是一个典型的分布式数据一致性解决方案。 分布式应用程序可以基于Zookeeper实现诸如数据发布/订阅,负载均…...
MFC 添加重新启动管理器支持
重启管理器是添加到 Visual Studio for Windows Vista 或更高版本操作系统的功能 如果发生意外关闭或重启,重新启动管理器将为你的应用程序添加支持。 重新启动管理器的行为取决于应用程序的类型。 如果你的应用程序是文档编辑器,则重新启动管理器让应用…...
一文带你深刻的进入Python,并且了解Python的优缺点
最近几年Python被吹的神乎其神,很多同学都不清楚Python到底能干什么?就盲目去学习Python,今天我就Python的应用领域来简单盘点一下,让想学习Python 的同学找对方向不迷茫。 2. Python 的特点 这里就谈谈自己的看法,首先 Python是…...
别具一格,原创唯美浪漫情人节表白专辑,(复制就可用)(html5,css3,svg)表白爱心代码(4)
别具一格,独此一家,原创唯美浪漫情人节表白专辑 不一样的惊喜哦~!(html5,css3,svg)表白爱心代码(复制就可用)(4) 目录 款式四:时光的记忆款 1、拷贝完整源代码 2、更新时光盒所…...
编译原理—翻译方案、属性栈代码
系列文章戳这里👇 什么是上下文无关文法、最左推导和最右推导如何判断二义文法及消除文法二义性何时需要消除左递归什么是句柄、什么是自上而下、自下而上分析什么是LL(1)、LR(0)、LR(1)文法、LR分析表LR(0)、SLR(1)、LR(1)、LALR(1)文法之间的关系编译原理第三章习…...
链表
一、从尾到头打印链表题目:输入一个链表,按链表从尾到头的顺序返回一个ArrayList。解题思路:使用栈作为中转,可以实现倒置打印classSolution { public:vector<int> printListFromTailToHead(ListNode* head){//使用栈完成中…...
CSS 样式优先级
CSS 样式优先级决定了最终呈现在浏览器中的样式是哪一组样式,在多组样式中有冲突时,最终呈现在浏览器中的样式是具有最高优先级的样式。 CSS 样式优先级顺序如下: 内联样式 > 内部样式 > 外部样式 !important > 内联样式 > ID…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
el-amap-bezier-curve运用及线弧度设置
文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...
ffmpeg(三):处理原始数据命令
FFmpeg 可以直接处理原始音频和视频数据(Raw PCM、YUV 等),常见场景包括: 将原始 YUV 图像编码为 H.264 视频将 PCM 音频编码为 AAC 或 MP3对原始音视频数据进行封装(如封装为 MP4、TS) 处理原始 YUV 视频…...
