当前位置: 首页 > news >正文

电动力学问题中的Matlab可视化

电磁场的经典描述

小说一则

  • 电磁场的经典描述就是没有啥玩意量子力学的经典电动力学下对电磁场的描述,以后有空写个科幻小说,写啥呢,就写有天张三遇见了一个外星人,外星人来自这样一个星球,星球上的物质密度特别低,导致外星人的测量会明显的影响物质的运动,外星人不能同时得到动量与位置啊啥的......
  • 外星人很希望有一天能找到一个不那么量子力学的世界(这依然是经典的"量子观")
  • 张三是个优秀的气象工作员,搞出来的全是李雅普诺夫不稳定的数学模型
  • 张三见了外星人表示很好,咱们臭味相投啊
  • 外星人表示,是的,学数学物理,物理数学有啥意思呢,不如享受当下的生活
  • 张三表示,好哇好哇,好个锤子哇,我们要探索宇宙,你不觉得李雅普诺夫的理论很过时吗,不够先进啦
  • 外星人表示:我说一个像是反驳了但是没有成功反驳的话啊:李雅普诺夫是苏俄时期逝世的
  • 张三表示:...........
  • 外星人表示:还是要好好学习哇!

四个方程组

麦克斯韦方程组

\left\{\begin{matrix} \iint_S\vec{D}\cdot ds=Q_f \\ \iint+S\vec{B}\cdot ds = 0\\ \oint_L\vec{E}\cdot dl=-\frac{d\Phi_B}{dt}\\ \oint_L\vec{H}\cdot dl = I_f + \frac{d\Phi_D}{dt} \end{matrix}\right.

\left\{\begin{matrix} \bigtriangledown \cdot \vec{D}=\rho\\ \bigtriangledown \cdot \vec{B} = 0\\ \bigtriangledown \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\\ \bigtriangledown \times \vec{H} = \vec{J}_f+\frac{\partial \vec{D}}{\partial t}\\ \end{matrix}\right.

电磁物质方程组

\begin{matrix} \vec{J}=\sigma \vec{E}\\ \vec{D}=\varepsilon \vec{E}=\varepsilon_0\vec{E}+\vec{P}\\ \vec{B}=\mu \vec{H}=\mu_0(\vec{H}+\vec{M}) \end{matrix}

电磁边值方程组

\left\{\begin{matrix} \vec{e_n}\times (\vec{E_2}-\vec{E_1})=0 \\ \vec{e_n}\times (\vec{H_2}-\vec{H_1})=\alpha \\ \vec{e_n}\cdot(\vec{D_2}-\vec{D_1})=\sigma\\ \vec{e_n}\cdot(\vec{B_2}-\vec{B_1})=0\\ \end{matrix}\right.

势场边值方程组

电势\left\{\begin{matrix} \varphi_1=\varphi_2\\ \varepsilon_2\frac{\partial \varphi_2}{\partial n}-\varepsilon_1\frac{\partial \varphi_1}{\partial n}=-\sigma \end{matrix}\right.

库伦规范下的磁矢势\left\{\begin{matrix} \bigtriangledown \cdot \vec{A}=0\\ \vec{A_1}=\vec{A_2} \\ \Delta \vec{A} = -\mu \vec{J} \end{matrix}\right.

(旋度的旋度=散度的散度-拉普拉斯算子)

磁标势\left\{\begin{matrix} \varphi_1=\varphi_2\\ \frac{\partial \varphi_2}{\partial n}-\frac{\partial \varphi_1}{\partial n}=-\alpha \end{matrix}\right.

数据可视化

重要提示

  • 不论是数据可视化还是数值计算
    • 都不可能替代你的理论分析过程
    • 永远是你先得到了一个差不多的结果,才去做数值分析,可视化等等。
  • 数据可视化常常受限于你的计算机和人眼
    • 不要太较真

常见绘图语言

  • 一些常见符号不再赘述

流线 Streamlines

        将矢量平滑得连接起来的不相交的曲线

matlab代码----Copyright 2015 The MathWorks, Inc.

[x,y] = meshgrid(0:0.1:1,0:0.1:1);
u = sin(x);
v = -cos(y);figure
quiver(x,y,u,v)startx = 0.1:0.1:1;
starty = ones(size(startx));
streamline(x,y,u,v,startx,starty)

matlab 语法

streamline(X,Y,Z,U,V,W,startx,starty,startz)
streamline(U,V,W,startx,starty,startz)
streamline(XYZ)
streamline(X,Y,U,V,startx,starty)
streamline(U,V,startx,starty)

 

等值线

        连接值相等的多个点的不相交的封闭曲线

x = linspace(-2*pi,2*pi);
y = linspace(-2*pi,2*pi);
[X,Y] = meshgrid(x,y);
Z = tan(X)-cos(Y);
contour(X,Y,Z)

 matlab 语法

contour(X,Y,Z,'线型',等高线表示的值)

数据可视化案例一:匀强电场中的电导体球

数据可视化案例二:匀强电场中的电介质球

相关文章:

电动力学问题中的Matlab可视化

电磁场的经典描述 小说一则 电磁场的经典描述就是没有啥玩意量子力学的经典电动力学下对电磁场的描述,以后有空写个科幻小说,写啥呢,就写有天张三遇见了一个外星人,外星人来自这样一个星球,星球上的物质密度特别低,导致外星人的测量会明显的影响物质的运动,外星人不能同时得到…...

云原生周刊:编程即将终结?

近日哈佛大学计算机科学的前教授 Matt Welsh,分享了他对计算机科学、分布式计算的未来以及 ChatGPT 和 GitHub Copilot 是否代表编程结束的开始的看法。 威尔士说,编程语言仍然很复杂。再多的工作也无法让它变得简单。 “在我看来,任何改进…...

C++ STL,resize 和 reserve 的区别

结论放前边&#xff1a;resize和reserve都可以给容器扩容&#xff0c;区别在于resize会进行填充&#xff0c;使容器处于满员的状态&#xff0c;即sizecapacity&#xff0c;而reserve不会填充&#xff0c;有size<capacity. 1. size 和 capacity 的区别 size和capacity是容器…...

Java——详解ReentrantLock与AQS的关联以及AQS的数据结构和同步状态State

前言 Java中大部分同步类&#xff08;Lock、Semaphore、ReentrantLock等&#xff09;都是基于AbstractQueuedSynchronizer&#xff08;简称为 AQS&#xff09;实现的。 AQS 是一种提供了原子式管理同步状态、阻塞和唤醒线程功能以及队列模型的简单框架。 本文会先介绍应用层&a…...

vue3+vite+ts 接入QQ登录

说明 前提资料准备 在QQ互联中心注册成为开发者 站点&#xff1a;https://connect.qq.com/创建应用&#xff0c;如图 js sdk方式 下载对应的sdk包 sdk下载&#xff1a;https://wiki.connect.qq.com/sdk%e4%b8%8b%e8%bd%bd 使用 下载离线js sdk 打开&#xff1a;https:…...

消息队列kafka及zookeeper机制

目录 一、zookeeper 1、zookeeper简介 2、zookeeper特点 3、zookeeper工作模式及机制 4、zookeeper应用场景及选举机制 5、zookeeper集群部署 ①实验环境 ②安装zookeeper 二、消息队列kafka 1、为什么要有消息队列 2、使用消息队列的好处 3、kafka简介 4、kafka…...

分布式 - 分布式体系架构:IT架构的演进过程

文章目录01. 应用与数据一体模式02. 应用服务和数据服务的分离03. 缓存与性能的提升04. 服务器集群处理并发05. 数据库读写分离06. 反向代理和 CDN07. 分布式文件系统和分布式数据库系统08. NoSQL和搜索引擎09. 业务拆分10. Redis缓存在应用服务器上是进程内缓存还是进程外缓存…...

CSDN 周赛42期

CSDN 周赛42期1、题目名称&#xff1a;鬼画符门之宗门大比2、题目名称&#xff1a;K皇把妹3、题目名称&#xff1a;影分身4、题目名称&#xff1a;开心的金明小结1、题目名称&#xff1a;鬼画符门之宗门大比 给定整数序列A。 求在整数序列A中连续权值最大的子序列的权值。 &…...

Vue:初识Vue

1、首先要导入vue.js <!-- 当你使用script标签安装vue之后&#xff0c;上下文就注册了一个全局变量vue --><script src"../1.Vue/js/vue.js"></script> 不能直接调用vue()&#xff0c;需要new vue(),否则会报错。 2、关于vue构造函数的参数opti…...

linux语言学习记录

文章目录前言一、linux文件结构二、指令三、Gvim编辑器1、命令模式2、底行命令四、正则表达式1、表达式匹配举例2、对文件里面内容进行操作3、使用 \( 和 )\ 符号括起正规表达式&#xff0c;即可在后面使用\1和\2等变量来访问和中的内容前言 记录自己学习linux的笔记&#xff…...

面向对象编程(进阶)7:面向对象特征三:多态性

一千个读者眼中有一千个哈姆雷特。 目录 7.1 多态的形式和体现 7.1.1 对象的多态性 举例&#xff1a; 7.1.2 多态的理解 7.1.3 举例 1、方法内局部变量的赋值体现多态 2、方法的形参声明体现多态 3、方法返回值类型体现多态 7.2 为什么需要多态性(polymorphism)&#x…...

vue尚品汇商城项目-day04【29.加入购物车操作(难点)】

文章目录29.加入购物车操作&#xff08;难点&#xff09;29.1加入购物车按钮29.2addCartSuce29.3购物车29.3.1 向服务器发送ajax请求&#xff0c;获取购物车数据29.3.2UUID临时游客身份29.3.3动态展示购物车29.4修改购物车产品的数量&#xff08;需要发请求&#xff1a;参数理解…...

KubeSphere 社区双周报 | 4.8 深圳站 Meetup 火热报名中 | 2023.3.17-3.30

KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者&#xff0c;并对近期重要的 PR 进行解析&#xff0c;同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为&#xff1a;2023.03.17-2023.…...

ChatGPT热炒之前 搜索引擎SEO算法已经悄然改变

2022年4月起&#xff0c;某度算法有了新的调整&#xff0c;这对于靠SEO获得流量的公司简直可以说是灭顶之灾。原本SEO从业者还指望跟之前一样&#xff0c;等算法调整稳定后&#xff0c;网站的自然排名还会再回来&#xff0c;但等到了10月份&#xff0c;仍然没有回暖的迹象&…...

【Linux】Mysql之视图的基本操作

一、什么是视图 MySQL 视图&#xff08;View&#xff09;是一种虚拟存在的表&#xff0c;同真实表一样&#xff0c;视图也由列和行构成&#xff0c; 但视图并不实际存在于数据库中。行和列的数据来自于定义视图的查询中所使用的 表&#xff0c;并且还是在使用视图时动态生成的。…...

《扬帆优配》西藏地震!美史上最严排放新规将出台,美股收涨

当地时间周四&#xff0c;美股遍及收高&#xff0c;科技股领涨。因耶稣受难日&#xff0c;美股4月7日&#xff08;周五&#xff09;休市&#xff0c;周四为美股本周最终一个买卖日&#xff0c;从本周状况来看&#xff0c;纳指与标普500指数均录得跌幅&#xff0c;别离跌1.1%和0…...

Python 小型项目大全 66~70

六十六、简单替换密码 原文&#xff1a;http://inventwithpython.com/bigbookpython/project66.html 简单替换密码用一个字母代替另一个字母。由于字母A有 26 种可能的替换&#xff0c;B有 25 种可能的替换&#xff0c;C有 24 种可能的替换&#xff0c;等等&#xff0c;所以可能…...

Barra模型因子的构建及应用系列八之Earning_Yeild因子

一、摘要 在前期的Barra模型系列文章中&#xff0c;我们构建了Size因子、Beta因子、Momentum因子、Residual Volatility因子、NonLinear Size因子、Book-to-Price因子和Liquidity因子&#xff0c;并分别创建了对应的单因子策略&#xff0c;其中Size因子和NonLinear Siz因子具有…...

2022蓝桥杯省赛——卡片

问题描述 小蓝有 k 种卡片, 一个班有 n 位同学, 小蓝给每位同学发了两张卡片, 一位同学的两张卡片可能是同一种, 也可能是不同种, 两张卡片没有顺序。没有两位同学的卡片都是一样的。 给定 n, 请问小蓝的卡片至少有多少种? 输入格式 输入一行包含一个正整数表示 n 。 输出…...

数据结构-快速排序

一.概要 快速排序是一种基于分治思想的排序算法&#xff0c;其基本思路是选取一个基准值&#xff08;pivot&#xff09;&#xff0c;通过一趟排序将待排序列分成两个部分&#xff0c;其中左半部分都小于基准值&#xff0c;右半部分都大于基准值&#xff0c;然后对左右两部分分…...

WuThreat身份安全云-TVD每日漏洞情报-2023-04-10

漏洞名称:Apple iOS/iPadOS 越界写入 漏洞级别:高危 漏洞编号:CVE-2023-28206 相关涉及:Apple iOS <16.4.0 漏洞状态:在野 参考链接:https://tvd.wuthreat.com/#/listDetail?TVD_IDTVD-2023-08810 漏洞名称:PHPGurukul Bank Locker Management System SQL 注入 漏洞级别:高…...

IDEA中查看源码点击Download Sources时出现Cannot download sources的问题复现及解决

IDEA中查看源码点击Download Sources时出现Cannot download sources的问题复现及解决 注意&#xff1a;实验环境的IDEA版本&#xff1a;2021.3.1 1、问题描述 1.1、当想看源码时&#xff0c;点击Download Sources 1.2、此时出现了Cannot download sources 2、解决办法 2.1、…...

R+VIC模型融合实践技术应用及未来气候变化模型预测/SWAT/HSPF/HEC-HMS

在气候变化问题日益严重的今天&#xff0c;水文模型在防洪规划&#xff0c;未来预测等方面发挥着不可替代的重要作用。目前&#xff0c;无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然&#xff0c;这些软件有各自的优点&#xff1b;但是&am…...

Python 02 数据类型(04元组)

一、元组 元组和列表的唯一不同&#xff1a;不能直接对元组的元素进行修改&#xff0c;删除&#xff0c;添加。 不能修改 1.1 创建元组 1.1.1 创建一个空元组 touple1() # ‘() 里面没有元素&#xff0c;表示为空元组 1.1.2 元组可以容纳任意数据类型的数据的有序集合&…...

WMS:入库库作业流程状态定位

系列文章目录 例如&#xff1a;第一章 WMS&#xff1a;入库库作业流程状态定位 目录 系列文章目录 文章目录 前言 一、入库订单作业状态 二、入库任务级作业状态 1.收货作业 2.验收作业 总结 前言 WMS系统在仓储作业的管理中发挥着至关重要的作用&#xff0c;其核心优势在于强大…...

蓝易云:Linux系统【Centos7】如何配置完整的CC攻击防护策略

完整的CC攻击防护策略包括以下步骤&#xff1a; 1. 调整内核参数 在CentOS 7系统中&#xff0c;可以通过修改内核参数来增加系统对CC攻击的抵抗力。具体操作如下&#xff1a; &#xff08;1&#xff09;打开sysctl.conf文件&#xff1a; vim /etc/sysctl.conf &#xff08…...

编解码持续升级,「硬」实力铸就视频云最优解

算力时代&#xff0c;视频云需要怎样的 CPU&#xff1f; 在数据爆发式增长及算法日益精进的大背景下&#xff0c;属于「算力」的时代俨然到来。随着视频成为互联网流量的主角&#xff0c;日趋饱和的音视频场景渗透率、人类对“感官之限”的追求与突破、更多元化的场景探索及技术…...

贵金属技术分析的止损保护

前面说过我们这些小散户&#xff0c;最多也不过十几万或者几万美金的账户&#xff0c;没有必要想国际的一些大基金那样&#xff0c;又锁仓&#xff0c;又对冲什么的&#xff0c;我们资金小的投资者&#xff0c;足够灵活&#xff0c;自然有我们存活的方法。所以我们要注意发挥我…...

Python 进阶指南(编程轻松进阶):三、使用 Black 工具来格式化代码

原文&#xff1a;http://inventwithpython.com/beyond/chapter3.html 代码格式化是将一组规则应用于源代码&#xff0c;从而使得代码风格能够简洁统一。虽然代码格式对解析程序的计算机来说不重要&#xff0c;但代码格式对于可读性是至关重要的&#xff0c;这是维护代码所必需的…...

计算机应用辅导大纲及真题

00019考试 湖北省高等教育自学考试实践&#xff08;技能&#xff09;课程大纲 课程名称&#xff1a;计算机应用基础&#xff08;实践&#xff09; 课程代码&#xff1a;00019 实践能力的培养目标。 计算机应用基础&#xff08;实践&#xff09;是高等教育自学考试多…...