当前位置: 首页 > news >正文

电动力学问题中的Matlab可视化

电磁场的经典描述

小说一则

  • 电磁场的经典描述就是没有啥玩意量子力学的经典电动力学下对电磁场的描述,以后有空写个科幻小说,写啥呢,就写有天张三遇见了一个外星人,外星人来自这样一个星球,星球上的物质密度特别低,导致外星人的测量会明显的影响物质的运动,外星人不能同时得到动量与位置啊啥的......
  • 外星人很希望有一天能找到一个不那么量子力学的世界(这依然是经典的"量子观")
  • 张三是个优秀的气象工作员,搞出来的全是李雅普诺夫不稳定的数学模型
  • 张三见了外星人表示很好,咱们臭味相投啊
  • 外星人表示,是的,学数学物理,物理数学有啥意思呢,不如享受当下的生活
  • 张三表示,好哇好哇,好个锤子哇,我们要探索宇宙,你不觉得李雅普诺夫的理论很过时吗,不够先进啦
  • 外星人表示:我说一个像是反驳了但是没有成功反驳的话啊:李雅普诺夫是苏俄时期逝世的
  • 张三表示:...........
  • 外星人表示:还是要好好学习哇!

四个方程组

麦克斯韦方程组

\left\{\begin{matrix} \iint_S\vec{D}\cdot ds=Q_f \\ \iint+S\vec{B}\cdot ds = 0\\ \oint_L\vec{E}\cdot dl=-\frac{d\Phi_B}{dt}\\ \oint_L\vec{H}\cdot dl = I_f + \frac{d\Phi_D}{dt} \end{matrix}\right.

\left\{\begin{matrix} \bigtriangledown \cdot \vec{D}=\rho\\ \bigtriangledown \cdot \vec{B} = 0\\ \bigtriangledown \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\\ \bigtriangledown \times \vec{H} = \vec{J}_f+\frac{\partial \vec{D}}{\partial t}\\ \end{matrix}\right.

电磁物质方程组

\begin{matrix} \vec{J}=\sigma \vec{E}\\ \vec{D}=\varepsilon \vec{E}=\varepsilon_0\vec{E}+\vec{P}\\ \vec{B}=\mu \vec{H}=\mu_0(\vec{H}+\vec{M}) \end{matrix}

电磁边值方程组

\left\{\begin{matrix} \vec{e_n}\times (\vec{E_2}-\vec{E_1})=0 \\ \vec{e_n}\times (\vec{H_2}-\vec{H_1})=\alpha \\ \vec{e_n}\cdot(\vec{D_2}-\vec{D_1})=\sigma\\ \vec{e_n}\cdot(\vec{B_2}-\vec{B_1})=0\\ \end{matrix}\right.

势场边值方程组

电势\left\{\begin{matrix} \varphi_1=\varphi_2\\ \varepsilon_2\frac{\partial \varphi_2}{\partial n}-\varepsilon_1\frac{\partial \varphi_1}{\partial n}=-\sigma \end{matrix}\right.

库伦规范下的磁矢势\left\{\begin{matrix} \bigtriangledown \cdot \vec{A}=0\\ \vec{A_1}=\vec{A_2} \\ \Delta \vec{A} = -\mu \vec{J} \end{matrix}\right.

(旋度的旋度=散度的散度-拉普拉斯算子)

磁标势\left\{\begin{matrix} \varphi_1=\varphi_2\\ \frac{\partial \varphi_2}{\partial n}-\frac{\partial \varphi_1}{\partial n}=-\alpha \end{matrix}\right.

数据可视化

重要提示

  • 不论是数据可视化还是数值计算
    • 都不可能替代你的理论分析过程
    • 永远是你先得到了一个差不多的结果,才去做数值分析,可视化等等。
  • 数据可视化常常受限于你的计算机和人眼
    • 不要太较真

常见绘图语言

  • 一些常见符号不再赘述

流线 Streamlines

        将矢量平滑得连接起来的不相交的曲线

matlab代码----Copyright 2015 The MathWorks, Inc.

[x,y] = meshgrid(0:0.1:1,0:0.1:1);
u = sin(x);
v = -cos(y);figure
quiver(x,y,u,v)startx = 0.1:0.1:1;
starty = ones(size(startx));
streamline(x,y,u,v,startx,starty)

matlab 语法

streamline(X,Y,Z,U,V,W,startx,starty,startz)
streamline(U,V,W,startx,starty,startz)
streamline(XYZ)
streamline(X,Y,U,V,startx,starty)
streamline(U,V,startx,starty)

 

等值线

        连接值相等的多个点的不相交的封闭曲线

x = linspace(-2*pi,2*pi);
y = linspace(-2*pi,2*pi);
[X,Y] = meshgrid(x,y);
Z = tan(X)-cos(Y);
contour(X,Y,Z)

 matlab 语法

contour(X,Y,Z,'线型',等高线表示的值)

数据可视化案例一:匀强电场中的电导体球

数据可视化案例二:匀强电场中的电介质球

相关文章:

电动力学问题中的Matlab可视化

电磁场的经典描述 小说一则 电磁场的经典描述就是没有啥玩意量子力学的经典电动力学下对电磁场的描述,以后有空写个科幻小说,写啥呢,就写有天张三遇见了一个外星人,外星人来自这样一个星球,星球上的物质密度特别低,导致外星人的测量会明显的影响物质的运动,外星人不能同时得到…...

云原生周刊:编程即将终结?

近日哈佛大学计算机科学的前教授 Matt Welsh,分享了他对计算机科学、分布式计算的未来以及 ChatGPT 和 GitHub Copilot 是否代表编程结束的开始的看法。 威尔士说,编程语言仍然很复杂。再多的工作也无法让它变得简单。 “在我看来,任何改进…...

C++ STL,resize 和 reserve 的区别

结论放前边&#xff1a;resize和reserve都可以给容器扩容&#xff0c;区别在于resize会进行填充&#xff0c;使容器处于满员的状态&#xff0c;即sizecapacity&#xff0c;而reserve不会填充&#xff0c;有size<capacity. 1. size 和 capacity 的区别 size和capacity是容器…...

Java——详解ReentrantLock与AQS的关联以及AQS的数据结构和同步状态State

前言 Java中大部分同步类&#xff08;Lock、Semaphore、ReentrantLock等&#xff09;都是基于AbstractQueuedSynchronizer&#xff08;简称为 AQS&#xff09;实现的。 AQS 是一种提供了原子式管理同步状态、阻塞和唤醒线程功能以及队列模型的简单框架。 本文会先介绍应用层&a…...

vue3+vite+ts 接入QQ登录

说明 前提资料准备 在QQ互联中心注册成为开发者 站点&#xff1a;https://connect.qq.com/创建应用&#xff0c;如图 js sdk方式 下载对应的sdk包 sdk下载&#xff1a;https://wiki.connect.qq.com/sdk%e4%b8%8b%e8%bd%bd 使用 下载离线js sdk 打开&#xff1a;https:…...

消息队列kafka及zookeeper机制

目录 一、zookeeper 1、zookeeper简介 2、zookeeper特点 3、zookeeper工作模式及机制 4、zookeeper应用场景及选举机制 5、zookeeper集群部署 ①实验环境 ②安装zookeeper 二、消息队列kafka 1、为什么要有消息队列 2、使用消息队列的好处 3、kafka简介 4、kafka…...

分布式 - 分布式体系架构:IT架构的演进过程

文章目录01. 应用与数据一体模式02. 应用服务和数据服务的分离03. 缓存与性能的提升04. 服务器集群处理并发05. 数据库读写分离06. 反向代理和 CDN07. 分布式文件系统和分布式数据库系统08. NoSQL和搜索引擎09. 业务拆分10. Redis缓存在应用服务器上是进程内缓存还是进程外缓存…...

CSDN 周赛42期

CSDN 周赛42期1、题目名称&#xff1a;鬼画符门之宗门大比2、题目名称&#xff1a;K皇把妹3、题目名称&#xff1a;影分身4、题目名称&#xff1a;开心的金明小结1、题目名称&#xff1a;鬼画符门之宗门大比 给定整数序列A。 求在整数序列A中连续权值最大的子序列的权值。 &…...

Vue:初识Vue

1、首先要导入vue.js <!-- 当你使用script标签安装vue之后&#xff0c;上下文就注册了一个全局变量vue --><script src"../1.Vue/js/vue.js"></script> 不能直接调用vue()&#xff0c;需要new vue(),否则会报错。 2、关于vue构造函数的参数opti…...

linux语言学习记录

文章目录前言一、linux文件结构二、指令三、Gvim编辑器1、命令模式2、底行命令四、正则表达式1、表达式匹配举例2、对文件里面内容进行操作3、使用 \( 和 )\ 符号括起正规表达式&#xff0c;即可在后面使用\1和\2等变量来访问和中的内容前言 记录自己学习linux的笔记&#xff…...

面向对象编程(进阶)7:面向对象特征三:多态性

一千个读者眼中有一千个哈姆雷特。 目录 7.1 多态的形式和体现 7.1.1 对象的多态性 举例&#xff1a; 7.1.2 多态的理解 7.1.3 举例 1、方法内局部变量的赋值体现多态 2、方法的形参声明体现多态 3、方法返回值类型体现多态 7.2 为什么需要多态性(polymorphism)&#x…...

vue尚品汇商城项目-day04【29.加入购物车操作(难点)】

文章目录29.加入购物车操作&#xff08;难点&#xff09;29.1加入购物车按钮29.2addCartSuce29.3购物车29.3.1 向服务器发送ajax请求&#xff0c;获取购物车数据29.3.2UUID临时游客身份29.3.3动态展示购物车29.4修改购物车产品的数量&#xff08;需要发请求&#xff1a;参数理解…...

KubeSphere 社区双周报 | 4.8 深圳站 Meetup 火热报名中 | 2023.3.17-3.30

KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者&#xff0c;并对近期重要的 PR 进行解析&#xff0c;同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为&#xff1a;2023.03.17-2023.…...

ChatGPT热炒之前 搜索引擎SEO算法已经悄然改变

2022年4月起&#xff0c;某度算法有了新的调整&#xff0c;这对于靠SEO获得流量的公司简直可以说是灭顶之灾。原本SEO从业者还指望跟之前一样&#xff0c;等算法调整稳定后&#xff0c;网站的自然排名还会再回来&#xff0c;但等到了10月份&#xff0c;仍然没有回暖的迹象&…...

【Linux】Mysql之视图的基本操作

一、什么是视图 MySQL 视图&#xff08;View&#xff09;是一种虚拟存在的表&#xff0c;同真实表一样&#xff0c;视图也由列和行构成&#xff0c; 但视图并不实际存在于数据库中。行和列的数据来自于定义视图的查询中所使用的 表&#xff0c;并且还是在使用视图时动态生成的。…...

《扬帆优配》西藏地震!美史上最严排放新规将出台,美股收涨

当地时间周四&#xff0c;美股遍及收高&#xff0c;科技股领涨。因耶稣受难日&#xff0c;美股4月7日&#xff08;周五&#xff09;休市&#xff0c;周四为美股本周最终一个买卖日&#xff0c;从本周状况来看&#xff0c;纳指与标普500指数均录得跌幅&#xff0c;别离跌1.1%和0…...

Python 小型项目大全 66~70

六十六、简单替换密码 原文&#xff1a;http://inventwithpython.com/bigbookpython/project66.html 简单替换密码用一个字母代替另一个字母。由于字母A有 26 种可能的替换&#xff0c;B有 25 种可能的替换&#xff0c;C有 24 种可能的替换&#xff0c;等等&#xff0c;所以可能…...

Barra模型因子的构建及应用系列八之Earning_Yeild因子

一、摘要 在前期的Barra模型系列文章中&#xff0c;我们构建了Size因子、Beta因子、Momentum因子、Residual Volatility因子、NonLinear Size因子、Book-to-Price因子和Liquidity因子&#xff0c;并分别创建了对应的单因子策略&#xff0c;其中Size因子和NonLinear Siz因子具有…...

2022蓝桥杯省赛——卡片

问题描述 小蓝有 k 种卡片, 一个班有 n 位同学, 小蓝给每位同学发了两张卡片, 一位同学的两张卡片可能是同一种, 也可能是不同种, 两张卡片没有顺序。没有两位同学的卡片都是一样的。 给定 n, 请问小蓝的卡片至少有多少种? 输入格式 输入一行包含一个正整数表示 n 。 输出…...

数据结构-快速排序

一.概要 快速排序是一种基于分治思想的排序算法&#xff0c;其基本思路是选取一个基准值&#xff08;pivot&#xff09;&#xff0c;通过一趟排序将待排序列分成两个部分&#xff0c;其中左半部分都小于基准值&#xff0c;右半部分都大于基准值&#xff0c;然后对左右两部分分…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...