当前位置: 首页 > news >正文

【1041. 困于环中的机器人】

来源:力扣(LeetCode)

描述:

在无限的平面上,机器人最初位于 (0, 0) 处,面朝北方。注意:

  • 北方向 是 y 轴的正方向。
  • 南方向 是 y 轴的负方向。
  • 东方向 是 x 轴的正方向。
  • 西方向 是 x 轴的负方向。

机器人可以接受下列三条指令之一:

  • "G":直走 1 个单位
  • "L":左转 90 度
  • "R":右转 90 度

机器人按顺序执行指令 instructions,并一直重复它们。

只有在平面中存在环使得机器人永远无法离开时,返回 true。否则,返回 false

示例 1:

输入:instructions = "GGLLGG"
输出:true
解释:机器人最初在(0,0)处,面向北方。
“G”:移动一步。位置:(0,1)方向:北。
“G”:移动一步。位置:(0,2).方向:北。
“L”:逆时针旋转90度。位置:(0,2).方向:西。
“L”:逆时针旋转90度。位置:(0,2)方向:南。
“G”:移动一步。位置:(0,1)方向:南。
“G”:移动一步。位置:(0,0)方向:南。
重复指令,机器人进入循环:(0,0)——>(0,1)——>(0,2)——>(0,1)——>(0,0)。
在此基础上,我们返回true

示例 2:

输入:instructions = "GG"
输出:false
解释:机器人最初在(0,0)处,面向北方。
“G”:移动一步。位置:(0,1)方向:北。
“G”:移动一步。位置:(0,2).方向:北。
重复这些指示,继续朝北前进,不会进入循环。
在此基础上,返回false

示例 3:

输入:instructions = "GL"
输出:true
解释:机器人最初在(0,0)处,面向北方。
“G”:移动一步。位置:(0,1)方向:北。
“L”:逆时针旋转90度。位置:(0,1).方向:西。
“G”:移动一步。位置:(- 1,1)方向:西。
“L”:逆时针旋转90度。位置:(- 1,1)方向:南。
“G”:移动一步。位置:(- 1,0)方向:南。
“L”:逆时针旋转90度。位置:(- 1,0)方向:东方。
“G”:移动一步。位置:(0,0)方向:东方。
“L”:逆时针旋转90度。位置:(0,0)方向:北。
重复指令,机器人进入循环:(0,0)——>(0,1)——>(- 1,1)——>(- 1,0)——>(0,0)。
在此基础上,我们返回true

提示:

  • 1 <= instructions.length <= 100
  • instructions[i] 仅包含 ‘G’, ‘L’, ‘R’

方法:模拟

思路

当机器人执行完指令 instructions 后,它的位置和方向均有可能发生变化。

  • 如果它的位置仍位于原点,那么不管它此时方向是什么,机器人都将永远无法离开。
  • 如果它的位置不在原点,那么需要考虑此时机器人的方向:
    • 如果机器人仍然朝北,那么机器人可以不会陷入循环。假设执行完一串指令后,机器人的位置是 (x, y) 且不为原点,方向仍然朝北,那么执行完第二串指令后,机器人的位置便成为 (2 × x, 2 × y),会不停地往外部移动,不会陷入循环。
    • 如果机器人朝南,那么执行第二串指令时,机器人的位移会与第一次相反,即第二次的位移是 (−x, −y),并且结束后会回到原来的方向。这样一来,每两串指令之后,机器人都会回到原点,并且方向朝北,机器人会陷入循环。
    • 如果机器人朝东,即右转了 90°。这样一来,每执行一串指令,机器人都会右转 90°。那么第一次和第三次指令的方向是相反的,第二次和第四次指令的方向是相反的,位移之和也为 0,这样一来,每四次指令之后,机器人都会回到原点,并且方向朝北,机器人会陷入循环。如果机器人朝西,也是一样的结果。

因此,机器人想要摆脱循环,在一串指令之后的状态,必须是不位于原点且方向朝北。

代码:

class Solution {
public:bool isRobotBounded(string instructions) {vector<vector<int>> direc {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};int direcIndex = 0;int x = 0, y = 0;for (char instruction : instructions) {if (instruction == 'G') {x += direc[direcIndex][0];y += direc[direcIndex][1];} else if (instruction == 'L') {direcIndex += 3;direcIndex %= 4;} else {direcIndex++;direcIndex %= 4;}}return direcIndex != 0 || (x == 0 && y == 0);}
};

执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:6 MB, 在所有 C++ 提交中击败了44.94%的用户
复杂度分析
时间复杂度:O(n),其中 n 是 instructions 的长度,需要遍历 instructions 一次。
空间复杂度:O(1),只用到常数空间。
author:LeetCode-Solution

相关文章:

【1041. 困于环中的机器人】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 在无限的平面上&#xff0c;机器人最初位于 (0, 0) 处&#xff0c;面朝北方。注意: 北方向 是 y 轴的正方向。南方向 是 y 轴的负方向。东方向 是 x 轴的正方向。西方向 是 x 轴的负方向。 机器人可…...

几何算法——4.交线(intersection curve)的表达与参数化、微分性质

几何算法——4.曲面求交的交线&#xff08;intersection curve&#xff09;的表达与参数化、微分性质1 关于曲面求交的交线表达2 交线的微分性质3 交线的参数化4 修正弦长参数化的微分性质1 关于曲面求交的交线表达 两个曲面求交&#xff0c;比较经典的方法是用跟踪法&#xf…...

【GPT】让你事半功倍特别好用的5个GPT工具

文章目录前言一、现在还能开通ChatGPT4.0吗&#xff1f;二、推荐五款与ChatGPT的相关实用工具1.一款浏览器插件&#xff1a;ChatGPT for Google2.一款生成图片的AI工具&#xff1a;midjourney3.推荐两款AI自动生成PPT&#xff1a;闪击PPT、mindshow4.识别PFD文件内容对话&#…...

人工智能大模型多场景应用原理解析

前言 在上篇文章《人工智能大模型之ChatGPT原理解析》中分享了一些大模型之ChatGPT的核心原理后&#xff0c;收到大量读者的反馈&#xff0c;诸如:在了解了核心原理后想进一步了解未来的发展趋势(比如生成式人工智能和元宇宙能擦出什么样的火花&#xff1f;)&#xff0c;大模型…...

SpringBoot默认包扫描机制与默认配置文件

文章目录一、SpringBoot默认包扫描机制 - 示例二、SpringBoot默认扫描包机制 - 原理三、SpringBoot手动扫描包机制 - 原理&示例四、ComponentScan与MapperScan五、SpringBoot默认配置文件一、SpringBoot默认包扫描机制 - 示例 默认情况下&#xff0c;扫描启动类同级及其子…...

RabbitMq 消息可靠性问题(一) --- publisher发送时丢失

前言 消息从生产者发送到exchange, 再到 queue, 再到消费者。这个过程中有哪些有消息丢失的可能性呢&#xff1f; 发送时丢失&#xff1a; 生产者发送的消息未送达 exchange消息到达 exchange 后未到达 queue MQ 宕机&#xff0c;queue将消息丢失consumer 接收到消息后未消费…...

Java初识泛型

目录 一、包装类 1、基本数据类型和对应的包装类 2、装箱和拆箱 3、自动装箱和自动拆箱 二、什么是泛型 三、引出泛型 1、泛型的语法 四、泛型类的使用 1、语法 2、示例 3、类型推导(Type Inference) 六、泛型如何编译的 1、擦除机制 2、为什么不能实例化泛型类…...

寸照换底色技巧大全,超详细图文教程

在日常的设计工作中&#xff0c;我们常常需要将图片的背景色进行修改&#xff0c;以适应不同的场景和需求。其中最常用的方法就是寸照换底色技巧。本文将为大家介绍一些常见的寸照换底色技巧&#xff0c;并提供超详细的图文教程&#xff0c;帮助大家轻松完成这项任务。 一、使…...

这篇文章价值很大:股票历史分时成交数据怎么简单获取?【干货】

文章目录前言一、准备二、使用步骤1.引入库2&#xff0c;使用这个API查询历史分时数据&#xff1a;3.查询完整历史分时数据4.其他查询方法参数格式&#xff1a;[(市场代码, 股票代码), ...]参数&#xff1a;市场代码, 股票代码, 文件名, 起始位置, 数量参数&#xff1a;市场代码…...

muduo源码剖析--Buffer

Buffer类 Buffer类是自定义处理数据输入缓冲的类&#xff0c;底层是vector< char >&#xff0c;通过readIdx和writeIdx将缓冲区分为3个部分&#xff0c;第一部分是预留的8字节已经读出的缓冲区字节数、第二部分是还未读出的部分、第三部分是可写的部分。 Buffer类的设计…...

AI人工智能简介和其定义

全称&#xff1a;人工智能&#xff08;Artificial Intelligence&#xff09; 缩写&#xff1a;AI / ai 人工智能研究 亦称智械、机器智能&#xff0c;指由人制造出来的可以表现出智能的机器。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智…...

python数据清洗

数据清洗包括&#xff1a;空值&#xff0c;异常值&#xff0c;重复值&#xff0c;类型转换和数据整合这里数据清洗需要用到的库是pandas库&#xff0c;下载方式还是在终端运行 &#xff1a; pip install pandas.首先我们需要对数据进行读取import pandas as pddata pd.read_cs…...

Python3 os.makedirs() 方法、Python3 os.read() 方法

Python3 os.makedirs() 方法 概述 os.makedirs() 方法用于递归创建目录。像 mkdir(), 但创建的所有intermediate-level文件夹需要包含子目录。 语法 makedirs()方法语法格式如下&#xff1a; os.makedirs(path, mode0o777)参数 path -- 需要递归创建的目录。 mode -- 权限…...

【Linux安装数据库】Ubuntu安装mysql并连接navicat

Linux系统部署Django项目 文章目录Linux系统部署Django项目一、mysql安装二、mysql配置文件三、新建数据库和用户四、nivacat链接mysql一、mysql安装 linux安装mysql数据库有很多教程&#xff0c;根据安装方式不同&#xff0c;相关的步骤也不同。可以参考&#xff1a;【Linux安…...

GaussDB工作级开发者认证—第一章GaussDB数据库介绍

一. GaussDB概述 GaussDB是华为基于openGauss自研生态推出的企业级分布式关系型数据库。具备企业级复杂事物混合负载能力&#xff0c;同时支持分布式事务强一致性&#xff0c;同城跨AZ部署&#xff0c;数据0丢失&#xff0c;支持1000的计算节点扩展能力&#xff0c;4PB海量存储…...

阿里张勇:所有行业都值得用大模型重新做一遍!

‍数据智能产业创新服务媒体——聚焦数智 改变商业“2023阿里云峰会”于4月11日在北京国际会议中心隆重召开&#xff0c;本次峰会以" 与实俱进 为创新提速&#xff01;"为主题&#xff0c;阿里巴巴集团董事会主席兼首席执行官张勇、阿里云智能集团首席技术官周靖人、…...

ES6(字符串的扩展与新增方法)

字符串的扩展与新增方法 1. 模板字符串 模板字符串解决了之前的字符串拼接 ESC下那个键&#xff1a;反引号&#xff08;&#xff09;包裹>替换引号 ${变量名/表达式/函数}>替换引引加加导致的代码冗余 //ES5(引引加加) $(#result).append(There are <b> basket.c…...

rk3568点亮LCD(lvds)

rk3568 Android11/12 适配 lvds 屏 LVDS&#xff08;Low Voltage Differential Signal&#xff09;即低电压差分信号。1994年由美国国家半导体&#xff08;NS&#xff09;公司为克服以TTL电平方式传输宽带高码率数据时功耗大、电磁干扰大等缺点而研制的一种数字视频信号传输方…...

全终端办公电子邮件集成方案

面临挑战 应用场景复杂&#xff0c;经常需要在不同终端进行切换&#xff0c;多屏、跨屏及移动办公要求高&#xff1b; 业务系统较多&#xff0c;需要同时支持多种业务的开展&#xff0c;对第三方应用集成及协同办公要求高&#xff1b; 对邮件系统的稳定及高效性要求高&#x…...

再不转型为ChatGPT程序员,有遭受降维打击的危险

Open AI在演示GPT-4的时候&#xff0c;有这么一个场景&#xff1a;给一个界面草图&#xff0c;就可以生成网页代码。这个演示非常简单&#xff0c;如果界面原型比较复杂呢&#xff1f;像这样&#xff1a;ChatGPT能不能直接生成HTML, CSS,JavaScript代码&#xff0c;把这个网页给…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...