NLP / LLMs中的Temperature 是什么?
ChatGPT, GPT-3, GPT-3.5, GPT-4, LLaMA, Bard等大型语言模型的一个重要的超参数

大型语言模型能够根据给定的上下文或提示生成新文本,由于神经网络等深度学习技术的进步,这些模型越来越受欢迎。可用于控制生成语言模型行为的关键参数之一是Temperature 参数。在本文中,我们将讨论语言生成模型中Temperature 参数的作用,以及它如何影响生成文本的质量。
Temperature 在模型中的作用
Temperature 是一个超参数,可用于控制生成语言模型中生成文本的随机性和创造性。它用于调整模型的softmax输出层中预测词的概率。温度参数定义为在应用 softmax 函数之前用于调整 logits 的比例因子的倒数。
当Temperature 设置为较低的值时,预测词的概率会变尖锐,这意味着选择最有可能的词的概率更高。这会产生更保守和可预测的文本,因为模型不太可能生成意想不到或不寻常的词。另一方面,当Temperature 设置为较高值时,预测词的概率被拉平,这意味着所有词被选择的可能性更大。这会产生更有创意和多样化的文本,因为模型更有可能生成不寻常或意想不到的词。
温度参数通常设置为 0.1 到 1.0 之间的值,具体取决于生成文本中所需的随机性和创造性水平。温度值为 1.0 对应于标准 softmax 函数,其中预测词的概率未按比例缩放。

一般来说,Temperature 越低,GPT-3越有可能选择出现概率较高的单词。当我们想要GPT-3解释概念时,它特别有用,因为答案只有一个。如果想要产生想法或完成一个故事,Temperature 设置的更大会给我们带来更多的多样性。
比如说以下提示:
Prompt: “The quick brown fox”
Temperature = 0.1:
“The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog.”
Temperature = 0.5:
“The quick brown fox jumped over the lazy dog. The lazy cat was not impressed. The quick brown fox ran away.”
Temperature = 1.0:
“The quick brown fox jumped over the lazy dog. Suddenly, a flock of birds flew overhead, causing the fox to stop in its tracks. It looked up at the sky, wondering where they were going.”
可以看到,Temperature 对生成文本的质量和创造性有重大影响。低值生成更可预测和重复的文本,而高值生成更多样化和创造性的文本。
Temperature 的数学原理解释
神经网络的输出是词汇表中每个单词(实际上是标记)的概率分布,告诉它这些单词中任何一个可能跟随输入文本的可能性。
该概率分布由softmax函数计算:

如果将Temperature 参数(T)添加到softmax函数,则公式如下:

更深入的解释Temperature 参数:
如果当T趋于无穷时会发生什么。每个x_i / T都会趋于0,从而得到一个均匀分布。也就是说概率分布变得更 “平”, 这会导致结果更随机。
当T很小(比如0.1)时会发生什么。每个x_i / T之间的差异变得更加明显(例如5比1变成50比10),这样概率分布变得“更尖”,也就是说结果会更确定。
总结
Temperature 参数是语言生成模型中一个重要的超参数,可用于控制生成文本的随机性和创造性。通过调整该参数,可以生成更保守或更有创意的文本,虽然Temperature 参数是生成高质量文本的强大工具,但需要注意的是,它并不能提高生成语言模型的性能。因为生成文本的质量高度依赖于训练数据的质量、模型的架构以及其他超参数,如学习率和批处理大小。在设计和训练生成语言模型时,必须考虑所有这些因素。
另外就是Temperature 参数可能并不总是提高生成文本的质量,特别是在训练数据有限或有噪声的情况下。在这种情况下,其他技术,如数据增强、正则化或迁移学习可能更有效地提高模型的性能。
最后Temperature 可以控制语言生成模型的行为。通过适当的调整,可以得到我们期望的结果。比如说生成更确定的答案可以降低该值,而生成更发散和创造性的答案可以提高该值,所以尝试一下不同的值,看看这些更改对不的提示有什么影响,这会帮助我们更好的获得想要的结果。
https://avoid.overfit.cn/post/04f2376489184f53a6ae9c5d4b43dc97
作者:Lazy Programmer
相关文章:
NLP / LLMs中的Temperature 是什么?
ChatGPT, GPT-3, GPT-3.5, GPT-4, LLaMA, Bard等大型语言模型的一个重要的超参数 大型语言模型能够根据给定的上下文或提示生成新文本,由于神经网络等深度学习技术的进步,这些模型越来越受欢迎。可用于控制生成语言模型行为的关键参数之一是Temperature …...
c#快速入门~在java基础上,知道C#和JAVA 的不同即可
☺ 观看下文前提:如果你的主语言是java,现在想再学一门新语言C#,下文是在java基础上,对比和java的不同,快速上手C#,当然不是说学C#的前提是需要java,而是下文是从主语言是java的情况下ÿ…...
nginx--基本配置
目录 1.安装目录 2.文件详解 2.编译参数 3.Nginx基本配置语法 1./etc/nginx/nginx.conf 2./etc/nginx/conf.d/default.conf 3.启动重启命令 4.设置404跳转页面 1./etc/nginx/conf.d/default.conf修改 2. 重启 5.最前面内容模块 6.事件模块 1.安装目录 # etc cd …...
R语言中apply系列函数详解
文章目录applylapply, sapply, vapplyrapplytapplymapplyR语言系列: 编程基础💎循环语句💎向量、矩阵和数组💎列表、数据帧排序函数💎apply系列函数 R语言的循环效率并不高,所以并不推荐循环以及循环嵌套…...
红黑树探险:从理论到实践,一站式掌握C++红黑树
红黑树揭秘:从理论到实践,一站式掌握C红黑树引言为什么需要了解红黑树?红黑树在现代C编程中的应用场景树与平衡二叉搜索树树的基本概念:二叉搜索树的定义与性质:平衡二叉搜索树的特点与需求:红黑树基础红黑…...
CDH6.3.2大数据集群生产环境安装(七)之PHOENIX组件安装
添加phoenix组件 27.1. 准备安装资源包 27.2. 拷贝资源包到相应位置 拷贝PHOENIX-1.0.jar到/opt/cloudera/csd/ 拷贝PHOENIX-5.0.0-cdh6.2.0.p0.1308267-el7.parcel.sha、PHOENIX-5.0.0-cdh6.2.0.p0.1308267-el7.parcel到/opt/cloudera/parcel-repo 27.3. 进入cm页面进行分发、…...
【C++要笑着学】搜索二叉树 (SBTree) | K 模型 | KV 模型
C 表情包趣味教程 👉 《C要笑着学》 💭 写在前面:半年没更 C 专栏了,上一次更新还是去年九月份,被朋友催更很久了hhh 本章倒回数据结构专栏去讲解搜索二叉树,主要原因是讲解 map 和 set 的特性需要二叉搜索…...
微信小程序开发 | 小程序开发框架
小程序开发框架7.1 小程序模块化开发7.1.1 模块7.1.2 模板7.1.3 自定义组件7.1.4插件7.2 小程序基础样式库—WeUI7.2.1 初识WeUI7.2.2【案例】电影信息展示7.3 使用vue.js开发小程序7.3.1 初识mpvue7.3.2 开发工具7.3.3 项目结构7.3.4【案例】计数器7.4 小程序组件化开发框架7.…...
气候系统设计
基础概念 一个星球(例如地球)的气候系统主要是一些基本参数基于公转周期(年)和自转周期(日)的变化,这其中会有两个变化因素:地理位置(经纬度)和天气变化&…...
如何使用Thymeleaf给web项目中的网页渲染显示动态数据?
编译软件:IntelliJ IDEA 2019.2.4 x64 操作系统:win10 x64 位 家庭版 服务器软件:apache-tomcat-8.5.27 目录一. 什么是Thymeleaf?二. MVC2.1 为什么需要MVC?2.2 MVC是什么?2.3 MVC和三层架构之间的关系及工…...
01 | 电机常用语
1 电机常用术语 1.1 原点 原点是指步进电机在驱动直线运动机构时的起始点。 1.2 点动 点动是电动机控制方式中的一种。 点动由于在这一控制回路中没有自保,也没有并接其它的自动装置,只是按下控制回路的启动按钮,主回路才通电,松开启动按钮,主回路就没电了。最典型的是…...
Leetcode.2601 质数减法运算
题目链接 Leetcode.2601 质数减法运算 Rating : 1779 题目描述 给你一个下标从 0 开始的整数数组 nums,数组长度为 n 。 你可以执行无限次下述运算: 选择一个之前未选过的下标 i ,并选择一个 严格小于 nums[i]的质数 ppp &…...
DP7416国产192K数字音频接收芯片兼容替代CS8416
目录192K 数字音频应用DP7416简介芯片特性192K 数字音频应用 采样率192khz,能将192,000hz以下的频率都录下来,而且对声波每秒连续采样192,000次。在回放的时候,这192,000个采样点按顺序播放,从而还原原来的声音。 过采样技术除…...
全球土壤湿度数据获取方法
土壤湿度亦称土壤含水率,表示土壤干湿程度的物理量。是土壤含水量的一种相对变量。通常用土壤含水量占干土重的百分数是示,亦称土壤质量湿度,如用土壤水分容积占土壤总容积的百分数表示,则称土壤容积湿度。通常说的土壤湿度&#…...
在proteus中仿真arduino实现矩阵键盘程序
矩阵键盘是可以解决我们端口缺乏的问题,当然,如果我们使用芯片来实现矩阵键盘的输入端口缺乏的问题将更加划算了,本文暂时不使用芯片来解决问题,而使用纯朴的8根线来实现矩阵键盘,目的是使初学者掌握原理。想了解使用芯…...
【ROS2指南-5】理解ROS2服务
目标:使用命令行工具了解 ROS 2 中的服务。 教程级别:初学者 时间: 10分钟 内容 背景 先决条件 任务 1 设置 2 ros2服务列表 3 ros2服务类型 4 ros2 服务查找 5 ros2界面展示 6 ros2 服务调用 概括 下一步 相关内容 背景 服务是 …...
探索Apache Hudi核心概念 (3) - Compaction
Compaction是MOR表的一项核心机制,Hudi利用Compaction将MOR表产生的Log File合并到新的Base File中。本文我们会通过Notebook介绍并演示Compaction的运行机制,帮助您理解其工作原理和相关配置。 1. 运行 Notebook 本文使用的Notebook是:《A…...
100Wqps异地多活,得物是怎么架构的?
说在前面 在40岁老架构师尼恩的数千读者群中,一直在指导大家简历和职业升级,前几天,指导了一个华为老伙伴的简历,小伙伴的优势在异地多活,但是在简历指导的过程中,尼恩发现: 异地多活的概念、异…...
35岁的测试工程师被公司强行辞退,感叹道:我以前就该好好努力了
曾经的高薪软件测试工程师,今年35岁了,被公司劝退了,外卖跑到凌晨,很累,但还是有一种想诉说的冲动。哪怕让大家觉得已经说得太多了,烦了,都成祥林嫂了,但是,我是真的想说…...
ASP.NET动态Web开发技术第5章
第5章数据验证一.预习笔记 1.验证控件概述: 2.RequiredFieldValidator(必填验证) 常用属性1:ControlToValidator:被验证的输入控件的ID 常用属性2:Text:验证失败时,验证控件显示的文本 常用…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
