当前位置: 首页 > news >正文

python cartopy手动导入地图数据绘制底图/python地图上绘制散点图:Downloading:warnings/散点图添加图里标签

……开学回所,打开电脑spyder一看一脸懵逼,简直不敢相信这些都是我自己用过的代码,想把以前的自己喊过来科研了(×)
废话少说,最近写小综述论文,需要绘制一个地图底图+散点图,点大小对应值大小的,来总结目前的观测结果,图大概如下:

在这里插入图片描述Locations and concentrations of BC snow observations collected from Arctic campaigns between 2005–2010. Reprinted from Dou and Xio (2016).

其实就是地图底图+散点图的绘制,思路很明确:先绘制底图+地理要素,再在底图上画散点图,那么作为开学编程复建,先一步步来。

底图绘制

主要是想画一下北极的底图,这个简单,无脑画就是了:

import matplotlib.path as mpathimport cmapsimport matplotlib.ticker as mtickerimport matplotlib.pyplot as plt###引入库包
import matplotlib as mpl
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
proj =ccrs.NorthPolarStereo(central_longitude=0)#设置地图投影
#在圆柱投影中proj = ccrs.PlateCarree(central_longitude=xx)
leftlon, rightlon, lowerlat, upperlat = (-180,180,60,90)#经纬度范围img_extent = [leftlon, rightlon, lowerlat, upperlat]
fig1 = plt.figure(figsize=(12,10))#设置画布大小
f1_ax1 = fig1.add_axes([0.2, 0.3, 0.5, 0.5],projection = ccrs.NorthPolarStereo(central_longitude=0))#绘制地图位置
#注意此处添加了projection = ccrs.NorthPolarStereo(),指明该axes为北半球极地投影
#f1_ax1.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,#                 linewidth=1, color='grey',linestyle='--')
f1_ax1.set_extent(img_extent, ccrs.PlateCarree())
f1_ax1.add_feature(cfeature.COASTLINE)
f1_ax1.add_feature(cfeature.OCEAN)
f1_ax1.add_feature(cfeature.LAND)
g1=f1_ax1.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=1, color='gray',linestyle='--')
g1.xlocator = mticker.FixedLocator(np.linspace(-180,180,13))
g1.ylocator = mticker.FixedLocator(np.linspace(60, 90,4))
#plt.show()
theta = np.linspace(0, 2*np.pi, 100)
center, radius = [0.5, 0.5], 0.44
verts = np.vstack([np.sin(theta), np.cos(theta)]).T
circle = mpath.Path(verts * radius + center)
f1_ax1.set_boundary(circle, transform=f1_ax1.transAxes)
plt.show()

结果出现了这个报错:

D:\Anaconda\lib\site-packages\cartopy\io\__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/50m_physical/ne_50m_coastline.zipwarnings.warn(f'Downloading: {url}', DownloadWarning)

查了下,这是由于cartopy无法下载地图数据导致,大部分原因都是因为网络问题(墙),既然如此,我们就手动下载吧。
先查看一下我们cartopy读取数据的路径:

import cartopy
cartopy.config

返回:

{'pre_existing_data_dir': '','data_dir': 'C:\\Users\\zzl\\.local\\share\\cartopy','cache_dir': 'C:\\Users\\zzl\\AppData\\Local\\Temp\\cartopy_cache_dir','repo_data_dir': 'D:\\Anaconda\\lib\\site-packages\\cartopy\\data','downloaders': {('shapefiles','natural_earth'): <cartopy.io.shapereader.NEShpDownloader at 0x20ed4d18ca0>,('shapefiles','gshhs'): <cartopy.io.shapereader.GSHHSShpDownloader at 0x20ed4d26520>}}

其中data_dir便是cartopy读取数据的文件,我们进入这个网址:Natural Earth Download,下载对应的数据,我这里下的是physics的50m和110m.
在这里插入图片描述
将下载的数据解压到data_dir路径里,如下:
在这里插入图片描述
再运行代码

from cartopy.io import shapereader
# 获取文件路径信息
filename = shapereader.natural_earth()
print(filename)

使其读取natural_earth数据即可。
画好后如下:
在这里插入图片描述

绘制散点

一般的打点的我们使用’plot‘加上经纬度就好了,但对于有数据的点而言,我们为了更加直观,需要将点大小与数据对应,这里我们使用plt.scatter。
需要注意的是;由于绘图时我们是根据经纬度坐标来打点,而我们的地图本身是带有投影的,因此,直接使用经纬度坐标并不可行,需要将其转为地理坐标:
代码如下:

stlat=[69.4,78.874,73.428,72.256]
stlon=[18.6,11.923,81.481,103.038]
bc=[24,11,15,60]
f1_ax1.scatter(stlon,stlat,bc,c='r',alpha=0.5,transform=ccrs.Geodetic())#转为地理坐标
plt.show()

绘图如下:
在这里插入图片描述

图例添加

添加图例是个很麻烦的问题,因为我们是想要根据其大小绘制,此时我们只能根据条件,一个个的绘制。

g11=plt.scatter(11.923,78.874,s=5,c='r',marker='o',linewidths=2,transform=ccrs.Geodetic())
g2=plt.scatter(18.6,69.4,s=20,c='r',marker='o',linewidths=2,transform=ccrs.Geodetic())
g3=g1=plt.scatter(103.058,72.256,s=50,c='r',marker='o',linewidths=2,transform=ccrs.Geodetic())
plt.legend((g11,g2,g3),('10-20','20-30','>50'),loc='best',scatterpoints=1,markerscale=1)
plt.show(

绘图如下:
在这里插入图片描述
以上,完成,编程复建结束,继续睡觉(

相关文章:

python cartopy手动导入地图数据绘制底图/python地图上绘制散点图:Downloading:warnings/散点图添加图里标签

……开学回所&#xff0c;打开电脑spyder一看一脸懵逼&#xff0c;简直不敢相信这些都是我自己用过的代码&#xff0c;想把以前的自己喊过来科研了&#xff08;&#xff09; 废话少说&#xff0c;最近写小综述论文&#xff0c;需要绘制一个地图底图&#xff0b;散点图&#xff…...

JavaScript中常用的数组方法

在日常开发中&#xff0c;我们会接触到js中数组的一些方法&#xff0c;这些方法对我们来说&#xff0c;可以很便利的达到我们想要的结果&#xff0c;但是因为方法比较多&#xff0c;有些方法也不常用&#xff0c;可能会过一段时间就会忘记&#xff0c;那么在这里我整理了一些数…...

磁疗为什么“没效果”?原来真相是这样!

很多人磁疗之后&#xff0c; 总爱迫不及待问一个问题&#xff1a; “这个多长时间见效啊&#xff1f;” …… 还有些人几天没有效果&#xff0c; 就果断下结论&#xff1a; “这东西没用&#xff01;” …… 有不少人错误地把磁疗等同于“药品”一样看待&#xff0c;总觉得…...

【直击招聘C++】5.1函数模板

5.1函数模板一、要点归纳1.定义函数模板2.实例化函数模板3.重载模板函数4.函数调用的匹配顺序一、要点归纳 1.定义函数模板 定义函数模板的一般格式如下&#xff1a; template<类型形参表> 返回类型 函数名&#xff08;形参表&#xff09; {函数体&#xff1b; }例如以…...

谈谈Java多线程离不开的AQS

如果你想深入研究Java并发的话&#xff0c;那么AQS一定是绕不开的一块知识点&#xff0c;Java并发包很多的同步工具类底层都是基于AQS来实现的&#xff0c;比如我们工作中经常用的Lock工具ReentrantLock、栅栏CountDownLatch、信号量Semaphore等&#xff0c;而且关于AQS的知识点…...

国际化语言,多语言三种方式

可以用透传的方式&#xff0c;自己写local的json文件&#xff0c;不需要配置什么&#xff0c;直接传&#xff0c;自己写方法i18n nextjsi18n umi4一、透传的方式 export const AppContext React.createContext<any>({})app.tsx 用context包裹import type { AppProps } f…...

C++——哈希3|位图

目录 常见哈希函数 位图 位图扩展题 位图的应用 常见哈希函数 1. 直接定址法--(常用) 这种方法不存在哈希冲突 取关键字的某个线性函数为散列地址&#xff1a;Hash&#xff08;Key&#xff09; A*Key B 优点&#xff1a;简单、均匀 缺点&#xff1a;需要事先知道关键字的…...

75 error

全部 答对 答错 选择题 3. 某公司非常倚重预测型方法交付项目&#xff0c;而其招聘的新项目经理却习惯于运用混合型方法。项目范围包含很多不清晰的需求。项目经理应该如何规划项目的交付&#xff1f; A company that is heavily focused on delivering projects using predi…...

ESP-C3入门8. 连接WiFi并打印信息

ESP-C3入门8. 连接WiFi并打印信息一、ESP32 连接WiFi的基本操作流程1. 初始化nvs存储2. 配置WiFi工作模式3. 设置WiFi登陆信息4. 启动WiFi5. 开启连接6. 判断是否成功二、事件处理函数1. 定义事件处理函数2. 创建事件组3. 在事件处理函数中设置事件组位4. 在其他任务中等待事件…...

使用python将EXCEL表格中数据转存到数据库

使用Python将excel表格中数据转存到数据库 1. 思路&#xff1a; 1&#xff09; 使用python读取excel表格中数据 2&#xff09;根据数据生成sql语句 3&#xff09;批量运行sql语句 2. 代码&#xff1a; import pandas as pddef readExcel(path, excel_file):return pd.read_e…...

【C++】类和对象(三)

目录 一、构造函数补充 1、初始化列表 1.1、初始化列表概念 1.2、初始化列表性质 2、explicit关键字 二、static成员 1、概念及使用 2、性质总结 三、友元 1、友元函数 2、友元类 四、内部类 五、拷贝对象时的一些编译器优化 一、构造函数补充 在《类和对象&#x…...

vTESTstudio - VT System CAPL Functions - General/Trigger Function

前面文章中我们已经介绍了常用的几种板卡的基本信息&#xff0c;那这些板卡该如何去通过软件调用呢&#xff1f;带着这个问题我们开始新的一块内容 - VT系统相关的自动化控制函数介绍&#xff0c;我会按照不同的板卡来分类&#xff0c;对其可控制的函数进行介绍&#xff0c;方便…...

IDEA 快捷键

ctrlD &#xff1a;复制当前行到下一行 ctrlO : 重写当前类的方法 ctrlshiftu : 大小写转化 Alt 上/下 &#xff1a;跳到上一个、下一个函数 Alt 左/右 : 回到上一个、下一个文件 Alt 回车 &#xff1a; 代码修正 Alt Insert &#xff1a; 插入代码 Ctrl Alt L &#xf…...

2023新华为OD机试题 - 入栈出栈(JavaScript) | 刷完必过

入栈出栈 题目 向一个空栈中依次存入正整数 假设入栈元素N(1 <= N <= 2^31-1) 按顺序依次为Nx ... N4、N3、N2、N1, 当元素入栈时,如果N1=N2+...Ny (y的范围[2,x],1 <= x <= 1000) 则N1到Ny全部元素出栈,重新入栈新元素M(M=2*N1) 如依次向栈存储6、1、2、3,当存…...

微信公众号扫码授权登录思路

引言 上学期研究了一下微信登录相关内容&#xff0c;也写了两三篇笔记&#xff0c;但是最后实际登录流程没有写&#xff0c;主要因为感觉功能完成有所欠缺&#xff0c;一直也没有好的思路&#xff1b;这两天我又看了看官方文档&#xff0c;重新构思了一下微信公众号登录相关的…...

数据结构与算法基础-学习-10-线性表之顺序栈的清理、销毁、压栈、弹栈

一、函数实现顺序栈的其他函数实现&#xff0c;请看之前的博客链接《数据结构与算法基础-学习-09-线性表之栈的理解、初始化顺序栈、判断顺序栈空、获取顺序栈长度的实现》。1、ClearSqStack&#xff08;1&#xff09;用途清理栈的空间。只需要栈顶指针和栈底指针相等&#xff…...

Hazel游戏引擎(005)

本人菜鸟&#xff0c;文中若有代码、术语等错误&#xff0c;欢迎指正 我写的项目地址&#xff1a;https://github.com/liujianjie/GameEngineLightWeight&#xff08;中文的注释适合中国人的你&#xff09; 文章目录前言关键操作代码文件关键代码代码流程代码文件关键代码exter…...

牛客网Python篇数据分析习题(四)

1.现有一个Nowcoder.csv文件&#xff0c;它记录了牛客网的部分用户数据&#xff0c;包含如下字段&#xff08;字段与字段之间以逗号间隔&#xff09;&#xff1a; Nowcoder_ID&#xff1a;用户ID Level&#xff1a;等级 Achievement_value&#xff1a;成就值 Num_of_exercise&a…...

盲盒如何创业?

所谓的“盲盒”&#xff0c;受众群体大部分是那些爱碰运气的人&#xff0c;顾客买的是那种在打开盲盒时一刹那的惊喜感和神秘感&#xff0c;在打开盲盒之前&#xff0c;谁也不知道自己会得到什么&#xff0c;这也是为什么消费者更愿意购买的原因。网上的盲盒&#xff0c;主要是…...

第1集丨Java中面向对象相关概念汇总

目录一、基本概念1.1 类1.2 属性1.3 方法1.4 静态1.5 包1.6 import二、高级概念2.1 构造方法2.2 继承2.3 super & this2.4 多态2.5 方法重载2.6 方法重写2.7 访问权限2.8 内部类2.9 final2.10 抽象2.11 接口2.12 匿名类面向对象的编程思想力图使计算机语言中对事物的描述与…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...