[NSSRound#11] 密码学个人赛
这个比赛没有参加,跟别人要了些数据跑一下,其实交互这东西基本上一样,跑通就行.
ez_enc
这题有点骗人,给了一堆AB串,一开始以为是培根密码,结果出来很乱.再看长度:192 应该就是01替换
a = 'ABAABBBAABABAABBABABAABBABAAAABBABABABAAABAAABBAABBBBABBABBABBABABABAABBAABBABAAABBAABBBABABABAAAABBAAABABAABABBABBBABBAAABBBAABABAABBAAAABBBAAAABAABBBAABBABABAABABAAAAABBBBABAABBBBAAAABBBBBAB'
long_to_bytes(int(a.replace('A','0').replace('B','1'),2))
#NSSCTF{mS4gT1Kv9L8NjPzx}
ez_fac
从名字可以看出来这是个分解题,关于RSA大数分解有好多论文,没见过的估计打死也作不出来,毕竟不是数学家.
from Crypto.Util.number import *
import random
from secret import flag,a0,a1,b0,b1p = getPrime(512)
q = getPrime(512)
e = getPrime(128)
n = p*q
assert pow(a0,2) + e * pow(b0,2) == n
assert pow(a1,2) + e * pow(b1,2) == n
m = bytes_to_long(flag)
c = pow(m,e,n)print("c=",c)
print("n=",n)
print("a0=",a0)
print("a1=",a1)
print("b0=",b0)
print("b1=",b1)
这个论文好像不很新,关于
可以得到 p = gcd(N,a0*b1-a1*b0)
c= 34007465638566836660852768374211870538357285529060206826620688555044780516477877596651414637089490522614456532732711803500304737160162560168303462221485961593760966240770414498297915175227814336224871400766371471776600674705757656616409870237891336752248110367865552469248343708419900511716030176178698949179
n= 70043427687738872803871163276488213173780425282753969243938124727004843810522473265066937344440899712569316720945145873584064860810161865485251816597432836666987134938760506657782143983431621481190009008491725207321741725979791393566155990005404328775785526238494554357279069151540867533082875900530405903003
a0= 8369195163678456889416121467476480674288621867182572824570660596055739410903686466334448920102666056798356927389728982948229326705483052970212882852055482
a1= 8369195163678456889416121462308686152524805984209312455308229689034789710117101859597220211456125364647704791637845189120538925088375209397006380815921158
b0= 25500181489306553053743739056022091355379036380919737553326529889338409847082228856006303427136881468093863020843230477979
b1= 31448594528370020763962343185054872105044827103889010592635556324009793301024988530934510929565983517651356856506719032859from gmpy2 import *e = (n - a0*a0)//b0//b0
#e = 255348562315891975282864504628198394319
'''
当 N = m*a^2 + n*b^2 时有 p = gcd(N, a0*b1 - a1*b0)
'''
p = gcd(n, a0*b1 - a1*b0)
d = invert(e, (p-1)*(n//p-1))
m = pow(c,d,n)
long_to_bytes(m)
#NSSCTF{ee7f5bf0-13b9-4a61-9b1b-243f2edef2e8}
ez_signin
这题有两个点,一个是二项式定理,一个是rabin加密
from Crypto.Util.number import *
from secret import flagp = getPrime(512)
q = getPrime(512)
assert p > q
n = p*q
e = 65536
m = bytes_to_long(flag)
num1 = (pow(p,e,n)-pow(q,e,n)) % n
num2 = pow(p-q,e,n)
c = pow(m,e,n)print("num1=",num1)
print("num2=",num2)
print("n=",n)
print("c=",c)
题目给出 num1 = p^e -q^e %n ; num2 = (p-q)^e %n
二式可转化为p^e + q^e %n 中间项同时带pq被模掉.所以两式相加与n取gcd可以得到p
第二步由于 e=0x1000 是个rabin加密 ,这个直接用个模板
num1= 134186458247304184975418956047750205959249518467116558944535042073046353646812210914711656218265319503240074967140027248278994209294869476247136854741631971975560846483033205230015783696055443897579440474585892990793595602095853960468928457703619205343030230201261058516219352855127626321847429189498666288452
num2= 142252615203395148320392930915384149783801592719030740337592034613073131106036364733480644482188684184951026866672011061092572389846929838149296357261088256882232316029199097203257003822750826537629358422813658558008420810100860520289261141533787464661186681371090873356089237613080052677646446751824502044253
n= 154128165952806886790805410291540694477027958542517309121222164274741570806324940112942356615458298064007096476638232940977238598879453357856259085001745763666030177657087772721079761302637352680091939676709372354103177660093164629417313468356185431895723026835950366030712541994019375251534778666996491342313
c= 9061020000447780498751583220055526057707259079063266050917693522289697419950637286020502996753375864826169562714946009146452528404466989211057548905704856329650955828939737304126685040898740775635547039660982064419976700425595503919207903099686497044429265908046033565745195837408532764433870408185128447965
e = 65536'''
n1 = p^e - q^e
n2 = (p-q)^e = p^e + q^e
n1+n2 | n
'''
from gmpy2 import *p = gcd(num1+num2,n)
q = n//p
phi = (p-1)*(q-1)#e = 0x1000 rabin
x0=invert(p,q)
x1=invert(q,p)
cs = [c]
for i in range(16):ms = []for c2 in cs:r = pow(c2, (p + 1) // 4, p)s = pow(c2, (q + 1) // 4, q)x = (r * x1 * q + s * x0 * p) % ny = (r * x1 * q - s * x0 * p) % nif x not in ms:ms.append(x)if n - x not in ms:ms.append(n - x)if y not in ms:ms.append(y)if n - y not in ms:ms.append(n - y)cs = msfor m in ms:flag = long_to_bytes(m)if b'nss' in flag:print(flag)#nssctf{W3lc0me_t0_nssctf_R0undll_w15h_U_can_have_Fun_t0day!!!#0919}
myGame
这个题应该放前边,内容很简单,有两个菜单项,一个是加密一个是读flag,加密用相同的n和flag但是用不同的e,这样就是个很标准的共模攻击
from Crypto.Util.number import *
import os
import random
import stringflag = os.getenv('FLAG')def menu():print('''=---menu---=
1. Guess
2. Encrypt
''')p = getPrime(512)
q = getPrime(512)
n = p*qdef randommsg():return ''.join(random.choices(string.ascii_lowercase+string.digits, k=30))mymsg = randommsg()
def guess():global mymsgmsg = input()if msg == mymsg:print(flag)else:print(mymsg)mymsg = randommsg()def encrypt():e = random.getrandbits(8)c = pow(bytes_to_long(mymsg.encode()), e, n)print(f'Cipher_{e}: {c}')def main():print(f'n: {n}')while True:opt = int(input())if opt == 1:guess()elif opt == 2:encrypt()main()
由于没有远端没有数据,就直接把板子放上,应该问题不大
n,e1,e2,c1,c2 = ...g, x1, x2 = gcdext(e1,e2) #e1,e2不互素时,最后公约数g开根号,一般如果m不是很大可直接开
m = pow(c1,x1,n)*pow(c2,x2,n) % n
print(long_to_bytes(int(irrot(m,g)[0])))
myMessage
同样是没有远端,也同样是板子题,e=127 每次的n不同,取e组数据求crt然后开根号.
from Crypto.Util.number import *
import osflag = os.getenv('FLAG')e = 127def sign():msg = input("Input message:")p = getPrime(512)q = getPrime(512)n = p*qc = pow(bytes_to_long((msg + flag).encode()), e, n)print(f"n: {n}")print(f"Token: {hex(c)}")def main():while True:sign()main()
举个栗子
#sage
def get_nc():...return n,c for i in range(e):tn,tc = get_nc()ns.append(tn)tc.append(tc)m127 = crt(c,n)
m = iroot(m127,e)[0]
print(long_to_bytes(int(m)))
NTR
最后一题同样是板子题,只是参数没有按原来的命名
import gmpy2
from flag import flag
from Crypto.Util.number import *def init():p = getPrime(2048)while True:x = getRandomNBitInteger(1024)y = getPrime(768)z = gmpy2.invert(x, p) * y % preturn (p, x, y, z)def encrypt(cipher, p, z):message = bytes_to_long(cipher)r = getRandomNBitInteger(1024)c = (r * z + message) % preturn cp, x, y, z = init()
c = encrypt(flag, p, z)
with open("cipher.txt", "w") as f:f.write("binz = " + str(bin(z)) + "\n")f.write("binp = " + str(bin(p)) + "\n")f.write("binc = " + str(bin(c)) + "\n")
这里定义了两个式子:
c = r*z +m (mod p)
z = y * x^-1 (mod p)
跟原行NTRU的式子: c = r*h + m (mod p) 几乎一样,只需要改下xy
#---------- NTRU -------------
binz = 0b10000100100000110000100001011001100110110111111110101001011100111001101101100100010010100110111010000001000001100011111011011000110000000111011100100010010001100110101001001110011000110000100101111001101010000101001101010001111001110000010100011001101010111000110111011111100101100100101100111000101011111101111011000101000100000010100100000110000001011100011100010001101001100101100100000101101101001100110100100101110000011001000000000010100010100011001100110101011000010000001111100101001001110111000110010001101111111110000111100001110011100001101010001101010011011110101100100110110011001111110111100100000011101000000100010011101110111100111100111100011001000111010110100101100110111101010010111110000100100001110101011000010101110010010100101110001001101010101001100000111010011110001000010100000100010000010000110011100111100110011100110111101011101001000110110011001011010101100110111111110001011110000100100011110111100011111011111011100110011011100010111010110010111101010001100010001010010111111101110011010101000010000011100000110001100110100001010011010111000000110001010110000110000000100111000101010000010100000110111111111001100100101001111001010010101101101100111010000001100101100100101010111010000011101000100011011111010101100000011100100101110001100100010010010100010000100100100111101101110110111101011001111011011101001110110100101111110001010110010000101111011110111011100111100110000110000010101001101001101000111010100110011000101010001110100110101101110011111010110010010111110111101100111100101110110011110100100000101000101100111000100011001111110001000010010001010101110001110000111100110001101111110110001001001100101110001010111111000111000100011001110001010101000100110001000101110110101000000001100010001000101110000000010001001001100110100100011100101101010010100001011111001011010011001000101101101001111001100101011101111110111101101100111110000100110110011110000111111011010010010011011100100101000000111110110010101110010011000111101101011111110001100101100011111110111111100111001011001010010101000011001110binp = 0b10011001100000011101010111000011011000001101101000010101101110001111101010101100110000100111101101000100011101001011001100101000110010001000100001010011011100110011001110111001101010000111100000111110110101011101110000010111111101101111001011111111101100010011010001000011000100000010111111001000100000010001010001110101101011001100110001100000001100111010010011010101000011001101111011001110101111111011111101010100100000111101010101001101110000010101100011111001111100001100111010000111100110000001010001001101111111111100010010010001100110000011100110100100001000001001011010000000010100100011001000000000000010100111010011000111011010001010111010001000101100101011001001101101001101101001110101111011010110100101000000001111000001100101000000010101011011011100000001010001111000000100110011011001010011101000010101100101001000001100111001101000111101000000111001110010100001111100101001001101001101000011111001001000101001100101010001011010101111001001101110011101011001011110000001000100100110110001011010101000111001111001011001000001011111110000111000001100011110000011001110000010110101010000000101001111111011100010000000111001110100000010001101100110111010100000011101000100111011111011110001011001110000010001101010011110100110100111001000100010000110110110010111100101111010011110011110100000001001110111100111101000100011011100011101111100101100110110100011101110001111111110010001000001101111100100101011111110111110010100101010110111010111110010110111101011101111110110110101001111101101000010010100000101111000100010110100010011101000100111000011111100111010011010011101110110000100101100101010111111000110100010010101001000001111001100100110101000100110101001011110111101010101110001111101111001110000101000001010110011111000000010010100010000111011001000111000011000011110100000111101101011100000101000111011101110101100101001110001101000111100111011110000110010101010000100110100011010111110111100010111111101010110001000010010011110111101000110001100101111000111101010101101101100100010110011101111101000011101100000101001111001binc = 0b1111010111110100110011100100001100111101111000010010000010010011101110101000101000100011111101011100110010010111111010000111001101010101010111100000000100111111001111110001111011110100001111001001010001000000011110000001001000011010100111100011110011011010011010011011111111100100110000110010011101110111001001011010101001101011100110101110001111111100100111011010011001001001100010110100000011100000000100110010101100000001010000101000100010000101101111010101000001000110011101100101010111110111000100001011110101010011010010110111010010100101001001010011000100110010010010110100101001111001111000011011000000110000111111001101001111010011110101001001111111110001001100011100101100011110110101000110010110110110101110110110111010110111100101101000111101101011000010011001111111010111000001100101001010010110111100100100100011110101010010010010010100100011001100011111010011101101101101000010101101011000100101101100001000000001101111111100100101111000101011001010010011000011001101101110101001011111010110000111111111011000101100000000011001010000000111110000001101101100101010010001101101010101000010010010110101110100100110011001001011101011111110011100000100001100010100000101011100001110101101011011110000101110011011100010100101010011101011001011011111100001100010000010110010001111010000110010000011100010010101110000101011110000111101001110001111111111101011000110001111011100100111000010110001111110100100011110000100010000011101110101111101000110100110111101110001011101110100001101101100011111000010101111100011100011011001011110010000000001010010101100111001111110110101000010110101110001011000101101110100110111100000110101101010010111001101000010001101110011101010111111011001110000001110000110001000101110110010001001001101010011110100000010100000100010110000001000011001011010000010111010100100101010100010011001100111011110111100101111100000100110110110101101110100011011101101100000101111000011110011000010000000100010000011110110010000010101001110000111110111110001001101000010011101010101101111101010100001101010111010000010000h = binz
c = binc
v1 = vector(ZZ, [1, h])
v2 = vector(ZZ, [0, p])
m = matrix([v1,v2]);# Solve SVP. f*h = g (mod p) 求f,g
f,g = m.LLL()[0]
mf = f*c % p % g
m = mf * inverse_mod(f, g) % g
long_to_bytes(m)
#NSSCTF{c6ff8aba-fda9-497a-91a7-ee1ac5da68ab}
相关文章:
[NSSRound#11] 密码学个人赛
这个比赛没有参加,跟别人要了些数据跑一下,其实交互这东西基本上一样,跑通就行. ez_enc 这题有点骗人,给了一堆AB串,一开始以为是培根密码,结果出来很乱.再看长度:192 应该就是01替换 a ABAABBBAABABAABBABABAABBABAAAABBABABABAAABAAABBAABBBBABBABBABBABABABAABBAABBABAA…...
玩转树莓派四、修改国内源提高更新速度
树莓派的软件包源默认连接的是官方源,速度不是很快,我们可以更换为第三方源以提高下载速度和体验。 首先通过命令 lsb_release -a 获取到版本号为 bullseye piRpi4B2G:/etc/apt $ lsb_release -a No LSB modules are available. Distributor ID: Debian Descripti…...
苹果手机网速慢怎么办?这些方法帮你解决网速慢的问题!
案例:苹果手机数据网络信号差,怎么解决? 【家人们,苹果手机不知咋回事,网速很慢,想要在某宝买个东西都得卡个半天。哭了!有没有什么方法解决?】 苹果手机作为一款高端智能手机&…...
linux_时序竞态-pause函数-sigsuspend函数-异步I/O-可重入函数-不可重入函数
接上一篇:linux_信号捕捉-signal函数-sigaction函数-sigaction结构体 今天来分享时序竞态的知识,关于时序竞态的问题,肯定会和cpu有关,也会学习两个函数,pause函数,sigsuspend函数, 也会分享什么…...
Tomcat的负载均衡和动静分离
---------------------NginxTomcat负载均衡、动静分离------------------------- Nginx 服务器:192.168.80.10:80 Tomcat服务器1:192.168.80.100:80 Tomcat服务器2:192.168.80.101:8080 192.168.80.101:8081 1.部署Nginx 负载均衡器 system…...
C++每日一练:最长递增区间 阿波罗的魔力宝石 投篮
文章目录 前言一、最长递增区间二、阿波罗的魔力宝石三、投篮总结 前言 今天的题太简单,甚至 “最长递增区间” 和 “投篮” 就是一个问题。实在没事干,也给做了!直接上代码算了… 提示:以下是本篇文章正文内容 一、最长递增区间…...
HCIP之VLAN
目录 网络的三层架构 接入层 无线的缺陷: 上网用户数量增多,网络卡顿的原因 CSMA/CD --- 载波侦听多路访问/冲突检测 CSMA/CA --- 载波侦听多路访问/冲突避免 无线网络没有使用冲突检测技术的原因 汇聚层 连接两条线路的原因 核心层 VLAN VLAN配…...
1686_MATLAB处理Excel文件
全部学习汇总: GreyZhang/g_matlab: MATLAB once used to be my daily tool. After many years when I go back and read my old learning notes I felt maybe I still need it in the future. So, start this repo to keep some of my old learning notes servral …...
亿发软件:中大型仓库进出货管理系统解决方案,定制软件让仓储作业高效便捷
中大型仓库出入库管理是传统厂家供应链管理流程的重要部分,直接关乎货物在仓库当中存储的安全,和员工工作的效率。一旦仓库管理当中出现了疏漏,那么货物的信息数据就会发生变动,导致实际与账目不符。人工带来的低效与不可控是传统…...
SQL Server基础 第二章 表结构管理
目录 一、数据类型 1,字符类数据类型 2,数值型数据类型 3,日期/时间型数据类型 二、主键(Primary key) 三、默认值 四、唯一键(Unique) 五、自增标识 六、约束 七、外键 一、数据类型 …...
华为OD机试真题(Java),最小步骤数(100%通过+复盘思路)
一、题目描述 一个正整数数组 设为nums,最大为100个成员,求从第一个成员开始正好走到数组最后一个成员所使用的最小步骤数。 要求: 第一步 必须从第一元素起 且 1<第一步步长<len/2 (len为数组长度);从第二步开始只能以所…...
3分钟搞懂:JavaScript 和 ECMAScript
JavaScript 和 ECMAScript ECMAScript 是 JavaScript 语言的国际标准,JavaScript 是 ECMAScript 的一种实现(Adobe ActionScript 和 JScript 同样实现了 ECMAScript)。 ECMAScript 是欧洲计算机制造商协会 ECMA(European Comput…...
Bito:一款 iead/webstorm 神级插件,由 ChatGPT 团队开发,堪称辅助神器
前言: idea(后端),webstorm(前端)中可以用的一款辅助插件:Bito 个人尝试体验效果: 优点是:可以自动完成一些场景代码。 缺点:太慢了,大部分时间一直转圈 摘取文档: 什么是Bito&…...
[ 云原生 | Docker ] 构建高可用性的 SQL Server:Docker 容器下的主从同步实现指南
文章目录 一、前言二、SQL Server 主从同步的原理介绍三、具体的搭建过程3.1 准备工作3.1.1 卸载旧版本(如果有,可选,非必须)3.1.2 安装 Docker3.1.3 验证本地 Docker 是否安装成功 3.2 创建 Docker 网络3.3 创建主从节点的 SQL S…...
Binary Utilities非默认目录构建和安装
在AppArmor零知识学习六、源码构建(3)中,详细介绍了libapparmor的构建步骤,但那完全使用的是官网给出的默认参数。如果需要将目标文件生成到指定目录而非默认的/usr,则需要进行一些修改,本文就来详述如何进…...
【故障检测】基于 KPCA 的故障检测【T2 和 Q 统计指数的可视化】(Matlab代码实现)
💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥 🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 …...
从“捐赠openEuler”到“向openEuler捐赠”,openEuler生态走入高速发展期
【中国,上海,2023年4月21日】openEuler Developer Day 2023于4月20-21日在线上和线下同步举办。本次大会由开放原子开源基金会指导,中国软件行业协会、openEuler社区、边缘计算产业联盟共同主办,以“万涓汇流,奔涌向前…...
ambari的kafka服务开启sasl
添加 sasl 配置⽂件 集群部署 Kafka2.2下载地址 http://archive.apache.org/dist/kafka/2.2.1/kafka_2.11-2.2.1.tgz 解压安装包 tar -zxvf kafka_2.11-2.2.1.tgz 部署略 ambari 数据kafka服务 在kafka的conf目录下创建sasl_conf目录,将kafka_client_jaas.conf/kafka_se…...
改善内部客户服务的 3 个技巧
在当今世界,许多公司都专注于改善客户关系管理,公司管理层面临的挑战是他们不仅拥有外部客户,员工也是有痛点和需求的内部客户。正如糟糕的客户服务会导致客户流失一样,糟糕的内部客户服务会增加员工流动率。在当今瞬息万变的就业…...
使用Apache POI的SXSSFworkbook实现大量数据导出到Excel文件
Apache POI是一个开源的、用来读写微软Excel文件的Java工具包,一般用来读取Excel文件中的数据或者将数据导出到Excel文件。HSSFWorkbook用来处理早期版本的Excel文件(xls格式),而XSSFWorkbook用来处理新版本Excel文(xl…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
