当前位置: 首页 > news >正文

多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测

多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测

目录

    • 多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1
2
3
4
5
6
7
8

9
10
11
12

基本介绍

MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测。基于贝叶斯(bayes)优化卷积神经网络-长短期记忆网络(CNN-LSTM)多变量时间序列预测,BO-CNN-LSTM/Bayes-CNN-LSTM多变量时间序列预测模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2020b及以上。
4.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测,MainBO_CNN_LSTMNTS.m是主程序,其余为函数文件,无需运行;

模型搭建

  • CNN-LSTM模型结合了CNN和LSTM的优点,CNN-LSTM网络模型如图1所示,本文使用的CNN-LSTM模型的第一部分是由卷积层和最大值组成的CNN部分池化层,对原始数据进行预处理并输入CNN卷积层,利用卷积核自适应提取生命特征,卷积层将遍历输入信息,将卷积核权重与局部序列进行卷积运算体管信息得到初步的特征矩阵,比原始序列数据(矩阵)更具表现力。
  • 本文使用的池化层是最大池化层,池化操作对提取的特征进行数据降维,避免模型过拟合,保留主要特征。最大池化层将前一个卷积层得到的特征矩阵作为输入,在这个矩阵上滑动一个池化窗口,在每一次滑动中取池化窗口的最大值,输出一个更具表现力的特征矩阵。
  • 池化后,连接一个 LSTM 层,提取相关向量由CNN构造成一个长期的时间序列作为LSTM的输入数据。卷积层将卷积层的数据展平(Flatten),模型中加入Flatten,将(height,width,channel)的数据压缩成一个长高宽通道的一维数组,然后我们可以添加直接密集层。
  • 对卷积池化数据压缩特征操作,多个卷积特征提取框架提取的特征融合或从输出层融合,全连接层聚合学习到的特征,激活函数使用Relu。
  • 通常,在模型训练过程中需要对超参数进行优化,为模型选择一组最优的超参数,以提高预测的性能和有效性。 凭经验设置超参数会使最终确定的模型超参数组合不一定是最优的,这会影响模型网络的拟合程度及其对测试数据的泛化能力。

8

  • 伪代码
    9

10

  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的所有程序,数据订阅后私信我获取):多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%%  贝叶斯优化网络参数
bayesopt(fitness, optimVars, ...    % 优化函数,和参数范围'MaxTime', Inf, ...                      % 优化时间(不限制) 'IsObjectiveDeterministic', false, ...'MaxObjectiveEvaluations', 10, ...       % 最大迭代次数'Verbose', 1, ...                        % 显示优化过程'UseParallel', false);%%  得到最优参数
NumOfUnits       = BayesObject.XAtMinEstimatedObjective.NumOfUnits;       % 最佳隐藏层节点数
InitialLearnRate = BayesObject.XAtMinEstimatedObjective.InitialLearnRate; % 最佳初始学习率
L2Regularization = BayesObject.XAtMinEstimatedObjective.L2Regularization; % 最佳L2正则化系数
%% 创建混合CNN-LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"CNN-LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% CNN特征提取convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);batchNormalizationLayer('Name','bn')eluLayer('Name','elu')averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')% 展开层sequenceUnfoldingLayer('Name','unfold')% 平滑层flattenLayer('Name','flatten')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% CNNLSTM训练选项
% 批处理样本
% 最大迭代次数
%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测

多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测 目录 多维时序 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多变量时间序列预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 MATLAB实现BO-CNN-…...

Shell知识点(一)

1.echo 命令 echo命令的作用是在屏幕输入一行文本&#xff0c;可以降该命令的参数原样输出。 $ echo hello world hello world 如果想要输出的是多行文本&#xff0c;包含换行符&#xff0c;这时就需要把多行文本放在引号里面 $ echo "<HTML><HEAD><TITLE…...

mysql 索引失效、联合索引失效场景和举例

索引失效 假设有一张user 表&#xff0c;表中包含索引 (id); (name); (birthday); (name,age); 对索引字段进行函数操作 select name from user where year(birthday) 2000;使用模糊查询&#xff0c;查询中使用通配符 select name from user where name like %益达%;使用i…...

快速将PDF转换为图片:使用在线转换器的步骤

PDF文件是一种常见的文档格式&#xff0c;但在某些情况下需要将其转换为图片格式&#xff0c;例如将PDF文件插入PPT演示文稿中。此时&#xff0c;使用在线PDF转换器是一种快速且简便的方法。 本文将介绍如何使用在线转换器将PDF文件转换为图片格式。 步骤1&#xff1a;选择合…...

什么是gpt一4-如何用上gpt-4

怎么使用gpt-4 目前GPT-4还未正式发布或公开&#xff0c;因此也没有详细的对接说明。但是我们可以根据GPT-4的前身GPT-3的应用经验&#xff0c;以及GPT-4的预期功能推测一些可能的使用步骤&#xff1a; 选择适合的GPT-4实现技术&#xff1a;GPT-4可能有不同的实现技术&#xff…...

Docker 相关概念

1、Docker是什么&#xff1f; 如何确保应用能够在这些环境中运行和通过质量检测&#xff1f;并且在部署过程中不出现令人头疼的版本、配置问题&#xff0c;也无需重新编写代码和进行故障修复&#xff1f; 答案就是使用容器。Docker之所以发展如此迅速&#xff0c;也是因为它对…...

STM32平衡小车 TB6612电机驱动学习

TB6612FNG简介 单片机引脚的电流一般只有几十个毫安&#xff0c;无法驱动电机&#xff0c;因此一般是通过单片机控制电机驱动芯片进而控制电机。TB6612是比较常用的电机驱动芯片之一。 TB6612FNG可以同时控制两个电机&#xff0c;工作电流1.2A&#xff0c;最大电流3.2A。 VM电…...

动态加载 JS 文件

动态加载JS文件是指在网页运行过程中通过JavaScript代码向页面中动态添加外部JS文件&#xff0c;这种方式能够提高页面加载速度和用户体验&#xff0c;并且可以帮助网站实现更多的功能和特效。 本文将详细介绍动态加载JS文件的基本原理、优势、注意事项以及具体实现方法&#…...

14、lldb调试指令

LLDB LLDB(Low Lever Debug): 默认内置于Xcode中的动态调试工具.标准的lldb提供了一组广泛的命令,旨在与老版本的GDB命令兼容.除了使用标准配置外,还可以很容易地自定义lldb以满足实际需要. 1.1 lldb语法: <command> [<subcommand> [<subcommand>...]] &l…...

浏览器缓存策略:强缓存和协商缓存

浏览器缓存&#xff1a;其实就是在本地使用的计算机中开辟一个内存区&#xff0c;同时也开辟一个硬盘区&#xff0c;作为数据传输的缓冲区&#xff0c;然后利用这个缓冲区来暂时保护用户以前访问的信息通常浏览器的缓存策略分为两种&#xff1a;强缓存和协商缓存&#xff0c;强…...

2023年Chat GPT 应用前景分析

从2022年12月初刚上线至今&#xff0c;不到半年时间ChatGPT月活就超过了1亿用户&#xff01;可谓火的一塌糊涂&#xff0c;比尔盖茨都称&#xff1a;ChatGPT的历史意义重大&#xff0c;不亚于PC或互联网诞生。以至于ChatGPT官网长期都处于满负荷运转的状态&#xff01; 由于Ch…...

并发计算公式

常用并发数计算公式&#xff1a;N[(n0.8SP)/(T0.2)]*R 其中&#xff1a; n为系统用户数&#xff1b; S为每个用户发生的业务笔数&#xff08;QPS&#xff09;&#xff1b; P为每笔业务所需要访问服务器的时间&#xff0c;单位为秒&#xff1b; T为使用业务的时间&#xff0c;单…...

“华为杯”研究生数学建模竞赛2020年-【华为杯】E题:能见度估计与预测(附获奖论文及python代码实现)

​​​​​​​ 目录 摘 要: 一、问题背景与问题重述 1.1 问题背景 1.2 问题重述...

Arduino学习笔记3

一.RGB三色小灯实验 1.源代码 int rgb_R11;//接到板子上面的PWM口11 R int rgb_G9;//接到板子上面的PWM口9 G int rgb_B10;//接到板子上面的PWM口10 B void setup() {pinMode(rgb_R,OUTPUT);//设置rgb_R的控制口为输出模式pinMode(rgb_G,OUTPUT);//设置rgb_G的控制口为输出模…...

BPMN2.0 任务-用户任务

“用户任务(user task)”用于对需要人工执行的任务进行建模。当流程执行到达用户任务时,会为指派至该任务的用户或组的任务列表创建一个新任务。 用户任务用左上角有一个小用户图标的标准任务(圆角矩形)表示。 用户任务在XML中如下定义。其中id是必须属性,name是可选属性…...

David Silver Reinforcement Learning -- Markov process

1 Introduction 这个章节介绍关键的理论概念。 马尔科夫过程的作用&#xff1a; 1&#xff09;马尔科夫过程描述强化学习环境的方法&#xff0c;环境是完全能观测的&#xff1b; 2&#xff09;几乎所有的RL问题可以转换成MDP的形式&#xff1b; 2 Markov Processes 2.1 Mark…...

项目结束倒数2

今天,解决了,多个点的最短路问题 用的dfs,配上了floyed计算出的广源距离 难点是要记录路线,dfs记录路线就很烦 但是好在结束了,经过无数的测试,确保没啥问题(应该把) 来看看我的代码 void dfs(int b[], int x, int* sum, int last, int sums, int a[], BFS& s, Floyd_A…...

VBA智慧办公9——图例控件教程

如图&#xff0c;利用VBA进行可视化交互界面的设计&#xff0c;在界面中我们用到了label&#xff0c;button&#xff0c;text&#xff0c;title等多个工具&#xff0c;在进行框图效果的逐一实现后可进行相应的操作和效果实现。 VBA&#xff08;Visual Basic for Applications&a…...

Presto VS Spark

环境配置 5个节点&#xff0c;每个节点10G内存。 测试SQL&#xff0c;每个执行3次&#xff0c;求平均&#xff0c;对比计算性能。 版本信息 Spark&#xff1a;2.3.1Presto: 0.208 10亿量级查询性能对别 Spark&#xff1a; spark-sql> select sex,count(1) from conta…...

为什么我们能判断声音的远近

想象一下&#xff0c;当我们走在路上时&#xff0c;听到了头顶的鸟儿在树梢间的叫声&#xff0c;即使无法透过浓密的树叶看见它&#xff0c;也可以大致知道鸟儿的距离。此时身后传来由远到近自行车铃铛声&#xff0c;我们并不需要回过头去看&#xff0c;便为它让开了道路。这些…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...