当前位置: 首页 > news >正文

Python数据结构与算法-欧几里算法(p95)

一、欧几里算法原理

  1. 欧几里得公式

欧几里得算法:gcd(a,b) = gcd(b, a mod b) ; mod是指模,即a/b取余数。

运算示例: gcd(60,21)= gcd(21,18) = gcd(18,3)=gcd(3,0)

证明略

  1. 最大公约数-欧几里得求解

(1)最大公约数定理

  • 约数:如果整数a能被整数b整除,那么a叫做b的倍数,b叫做a的约数。

  • 给定两个整数a,b,两个数的所有公共约数中的最大值即为最大公约数 (Greatest Common Divisor, GCD)

  • 例:12与16的最大公约数是4。

  • 最大公约数求解:

  • 欧几里得,又叫辗转相除法

  • 《九章算术》:更相减损术

(2)最大公约数求解-欧几里得算法实现


def gcd_1(a,b): # 最大公约数-递归,a,b是两个数值if b == 0: # 递归终止条件return aelse:return gcd_1(b, a % b) # 公式gcd(a,b) = gcd(b, a mod b)print(gcd_1(12,16))def gcd_2(a, b): # 最大公约数-非递归,a,b是两个数值while b > 0: # b = 0时就得的a就是最后求的值r = a % b # 循环中a,b值一直在变化,需要先存储在一个变量中,不能直接用a%ba = bb = rreturn aprint(gcd_2(12,16))

输出结果

4
4

二、欧几里得算法应用——分数计算

1、提出问题

利用欧几里得算法实现一个分数类,支持分数的四则运算。

2、分数计算代码实现

(1)知识点—__add__()函数

__add__()方法是python的内置方法之一, 是一个一元函数。作用相当于求和运算。

1)__add__(self, other)是同一个类,两个对象相加的实现逻辑

class Myclass(object):def __init__(self,value):self.value = valuedef __add__(self, other):return self.value + other.value
a = Myclass(1)
b = Myclass(2)
print(a + b) # 实现加法运算

以上代码中,self 只本身对象,other 指另一个对象(同属于Myclass 类)

2)类外部加法使用

class Num:def __init__(self, x):self.x = xnumber = Num(5)    
print(number.x.__add__(6))# 输出结果
11

3) __add__属性-拼接操作

可以进行拼接操作,拼接list和tuple。

b = [7, 8, 9, 10, 11, 12]
d = [19, 20, 21, 22, 23, 24]# 执行了拼接动作,拼接后的值被return出来
g = b.__add__(d)
print(g)# 输出结果
[7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24]

(2)代码实现-加法

# 分数运算
class Fraction(): # 分数运算的类def __init__(self,a,b): # 传入参数属性,a,b是数字self.a = a # 分子self.b = b # 分母x = self.gcd(a, b) # 分子分母的最大公约数,x不是属性,不需要加self# 约分,分子和分母都除以最大公约数self.a = a / x # 分子化简self.b = b /x # 分母化简def gcd(self, a, b): # a,b最大公约数while b > 0:r = a % ba = b b = rreturn adef lcm(self, a, b): # 最小公倍数# 12 ,16 最大公约数为4# LCM = (12/4) * (16/4) * 4x = self.gcd(a, b)return a / x * b # (a / x) * (b / x) * x 的化简def __add__(self, other): # 加法,是内置函数# 1/12 + 1/20# 分母化成最小公倍数a = self.a # 分子b = self.b # 分母c = other.a # 分子d = other.b # 分母den = self.lcm(b, d) # 找到分母的最小功倍数,作为分母num_a = den / b * a  # 换算分子anum_c = den / d * c  # 换算分子cnum = num_a + num_c # 分子相加return Fraction(num, den) # 分子分母化简def __str__(self) -> str: # 类中的字符串显示的函数return "%d/%d" %(self.a, self.b) # %d表示十进制的整数f = Fraction(30,16) # 实例化类
print(f)a = Fraction(1, 12) # 1/12 实例化类
b = Fraction(1, 20) # 1/20 实例化类
print(a + b)

输出结果

15/8
2/15

相关文章:

Python数据结构与算法-欧几里算法(p95)

一、欧几里算法原理 欧几里得公式 欧几里得算法:gcd(a,b) gcd(b, a mod b) ; mod是指模,即a/b取余数。 运算示例: gcd(60,21) gcd(21,18) gcd(18,3)gcd(3,0) 证明略 最大公约数-欧几里得求解 &#xff08…...

【故障诊断】用于轴承故障诊断的性能增强时变形态滤波方法及用于轴承断层特征提取的增强数学形态算子研究(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥 🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 …...

水羊转债,超达转债,晓鸣转债上市价格预测

水羊转债 基本信息 转债名称:水羊转债,评级:A,发行规模:6.94987亿元。 正股名称:水羊股份,今日收盘价:13.94元,转股价格:13.71元。 当前转股价值 转债面值 /…...

从数据管理到数据资产管理

数据已经与土地、劳动力、资本、技术并称为五种生产要素,数据的价值是毋庸置疑的。数据甚至成为了国家的基础性战略资源,数字经济也正在成为经济增长的强大创新动力。那么—— 数据到底指的是什么? 数据管理又是怎么回事? 数据如何…...

RabbitMQ【#1】是什么,有什么用

RabbiMQ是什么? RabbitMQ是一种开源的消息队列软件,它实现了高级消息队列协议(AMQP)并支持多种编程语言。它可以用于将消息从一个应用程序传递到另一个应用程序或进程,并支持分布式系统中的异步消息通信。RabbitMQ的主…...

RabbitMQ防止消息丢失

生产者没有成功把消息发送到MQ 丢失的原因 :因为网络传输的不稳定性,当生产者在向MQ发送消息的过程中,MQ没有成功接收到消息,但是生产者却以为MQ成功接收到了消息,不会再次重复发送该消息,从而导致消息的丢…...

ImageJ用户手册——第二部分(ImageJ操作)

ImageJ用户手册-第二部分 ImageJ的使用4. 使用键盘快捷键5. 查找命令6. 撤消和重做7. 图像类型和格式原生格式非原生格式 8. 堆栈、虚拟堆栈、超堆栈Stacks(堆栈)Virtual Stacks(虚拟堆栈)Hyperstacks(超堆栈&#xff…...

Java中Lambda表达式(面向初学者)

目录 一、Lambda表达式是什么?什么场景下使用Lambda? 1.Lambda 表达式是什么 2.函数式接口是什么 第二章、怎么用Lambda 1.必须有一个函数式接口 2.省略规则 3.Lambda经常用来和匿名内部类比较 第三章、具体使用场景举例() …...

2023年淮阴工学院五年一贯制专转本数字电子技术考试大纲

2023年淮阴工学院五年一贯制专转本数字电子技术考试大纲 一、考核对象 本课程的考核对象是五年一贯制高职专转本电子科学与技术专业普通在校生考生。 二、考试目的及总体要求 通过本课程的考试,检查学生对掌握数字电路的基础理论知识的掌握程度,是否…...

使用 GO 编写 Web 应用:学习如何使用 GO 语言编写 Web 应用,包括使用 HTTP 路由、模板引擎等。

GO 语言是一个高效、可靠和简洁的编程语言,越来越多的开发者开始选择 GO 语言来编写 Web 应用。本文将介绍如何使用 GO 语言编写 Web 应用,并且将重点关注使用 HTTP 路由和模板引擎。 使用 HTTP 路由 HTTP 路由是 Web 应用中非常重要的一个概念。它可以帮助我们将请求路由到…...

Leetcode-day4【88】【167】【125】【345】

文章目录 88. 合并两个有序数组题目解题思路解题思路【学习】尾插入法 167. 两数之和 II - 输入有序数组题目解题思路 125. 验证回文串题目解题思路 345. 反转字符串中的元音字母题目解题思路 88. 合并两个有序数组 题目 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums…...

【IoT】如何使用软件加密(文件夹加密工具.exe),并破解工具

目录 第一步:显示隐藏的文件。 第二步:将隐藏文件变成文件夹。 第三步:解密文件。 有时候出差或者有些商务场合,需要对一些敏感文件做一下简单的加密,这样在分享内容的时候,可以起到初步的保护作用。 当…...

Spring Boot——优雅的参数校验

🎈 概述 当我们想提供可靠的 API 接口,对参数的校验,以保证最终数据入库的正确性,是 必不可少 的活。比如下图就是 我们一个项目里 新增一个菜单校验 参数的函数,写了一大堆的 if else 进行校验,或者基础校…...

【c语言】typedef的基本用法 | 定义格式

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 给大家跳段街舞感谢支持&#xff01;ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ ኈ ቼ ዽ ጿ…...

深度学习论文分享(二)Data-driven Feature Tracking for Event Cameras

深度学习论文分享&#xff08;二&#xff09;Data-driven Feature Tracking for Event Cameras&#xff08;CVPR2023&#xff09; 前言Abstract1. Introduction2. Related Work3. Method3.1. Feature Network3.2. Frame Attention Module3.3. Supervision 4. Experiments5. Con…...

蛇优化算法

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 蛇优化算法算法流程图初始化进化操作搜索阶段&#xff08;无食物&#xff09;——全局搜索搜索阶段&#xff08;有食物&#xff09;——局部搜索战斗模式交配模式 备…...

循环神经网络(RNN)简单介绍—包括TF和PyTorch源码,并给出详细注释

文章目录 循环神经网络&#xff08;RNN&#xff09;入门教程1. 循环神经网络的原理2. 循环神经网络的应用3. 使用keras框架实现循环神经网络3.1导入对应的库及加载数据集3.2.数据预处理3.3定义RNN模型3.4训练模型3.5测试模型 4.使用PyTorch框架实现上述功能—注释详细5.结论 循…...

Struts2 快速入门

Struts2 是一个基于 MVC 设计模式的 Java Web 应用程序框架&#xff0c;它可以帮助我们更加有效地开发 Web 应用程序。Struts2 采用了前端控制器模式&#xff0c;通过核心控制器 DispatchServlet 将所有请求进行集中处理&#xff0c;然后将请求分发到指定的 Action 中&#xff…...

关于PullToRefreshView下拉刷新失效问题

一、问题原因 昨天&#xff0c;突然一个问题丢在了我的头上&#xff0c;用户反馈说某某界面下拉刷新不好使啊&#xff0c;怎么回事。二话不说直接运行项目&#xff0c;经过测试&#xff0c;发现果然不好使。一看代码提交日期好家伙2020年&#xff0c;百思不得其解&#xff0c;…...

JAVA开发中的六大原则

JAVA开发中的六大原则&#xff0c;也被称为SOLID原则&#xff0c;是软件开发中常用的一组设计原则。这些原则提供了实现高质量、易于维护和可扩展软件的基本策略。 以下是JAVA开发中的六大原则以及它们的详细说明&#xff1a; 单一职责原则&#xff08;Single Responsibility…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...