Towards Principled Disentanglement for Domain Generalization
本文用大量的理论论述了基于解纠缠约束优化的域泛化问题。
这篇文章认为以往的文章在解决域泛化问题时所用的方法都是non-trivial的,也就是说没有作严格的证明,是不可解释的,而本文用到大量的定理和推论证明了方法的有效性。
动机
因为域泛化问题是通过在多个源域上训练模型,使模型能在目标域上获得好的效果,所以域泛化问题本质上是学习一个好的域不变语义表示模型。因此本文提出了一个解耦网络,把样本解耦成变化特征和语义特征(变化特征和语义特征是什么意思呢这个之后会详细说明),用生成器辅助语义编码器,使语义编码器能学习到域不变表示。
怎么实现域泛化:
把样本分解成Variation特征和Semantic特征。Variation可以看成是风格特征,Semantic可以看成是内容特征。
通过把样本的内容和风格分离,让Semantic编码器学习域不变表示。
具体做法:
- 输入:一组样本数量有限的数据这些数据可以来自不同源域
- Variation Encoder:学习Variation特征,也就是风格特征(比如图中学习的是旋转角度),与内容无关
- Semantic Encoder:学习语义特征,也就是类别特征,与域无关
因此两个Encoder实现了风格和类别的解耦。 - Generator:生成带有V的风格和S类别的样本

把一个样本xi输入到Semantic Encoder中,把另一个样本xj输入到Variation Encoder中,(这俩样本可能不是同一个域),让Generator学习生成带有V的风格和S类别的样本
Semantic Encoder与Generator本来是对抗关系,
,也就是训练Decoder使损失尽可能大,训练Semantic Encoder使损失尽可能小,但这篇文章没有用到复杂的生成对抗损失,而是转换成了计算简单的约束优化问题:

如何理解约束优化公式?
约束条件的含义:同分布样本x,x’ 经过fs和fv,输出向量,concat后输入generator里,输出的样本与原始输入到fs里的样本x的距离要小于一个约束y
对约束优化公式的解释:
我们先不看约束条件。假设没有约束条件,就是一个最简单的交叉熵损失解决分类问题。那么学习到的fs(θ)既考虑到了内容信息也考虑到了风格信息,所以没有域泛化的特点。
那么怎么才能实现域泛化?给该损失添加一个约束。根据定义1(下面有解释)可知,如果x与x’同分布,Decoder就会生成x,这样就满足约束条件。而定义1的成立是在fs对于所有的域都具有不变性的前提下的(见定义1)。如果fs只考虑当前域,Decoder生成的结果就会偏离x,就会不满足约束条件。因此这个约束条件就把fs限制住了,让它对于所有域都具有不变性。
综上得知约束优化的含义:在保证fs对于所有域都具有不变性的前提下(约束条件),使fs在当前域有一个正确的输出标签(损失函数)。
那么问题又来了,如何训练Decoder保证向量充分解耦时才能得到正确的输出?(暂时还没看)
损失函数及训练过程
损失函数就是上面约束优化公式的变体,其中第一项是约束优化公式中的交叉熵损失,第二项就是约束条件,由于约束优化问题在边界取得最值,所以直接让d()-y逼近0即可满足约束条件。
(有个问题,xi和xj不一定是同一个域的啊)


[27]表明,在某些条件下,即使是标准的经验风险最小化,也可能优于许多最近提出的模型。
以更小的计算量实现了更好的效果。
以下这些定理推论主要目的是推出公式(5)
1、基于解纠缠的不变性:x和x’分别是semantic和variation的输入,如果x和x’同分布,那么Generator的输出=x

2、基于解纠缠的域迁移:无论x与x’是否同分布,x输入semantic的分布与Generator输出的X经过semantic的分布是相同的

相关文章:
Towards Principled Disentanglement for Domain Generalization
本文用大量的理论论述了基于解纠缠约束优化的域泛化问题。 这篇文章认为以往的文章在解决域泛化问题时所用的方法都是non-trivial的,也就是说没有作严格的证明,是不可解释的,而本文用到大量的定理和推论证明了方法的有效性。 动机 因为域泛…...
计算机网络学习02
1、TCP 与 UDP 的区别? 是否面向连接 : UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。是否是可靠传输: 远地主机在收到 UDP 报文后&…...
网络交换机端口管理工具
如今,企业或组织级网络使用数百个交换机端口作为其 IT 基础架构的一部分来实现网络连接。这使得交换机端口管理成为日常网络管理任务的一部分。传统上,网络管理员必须依靠手动网络交换机端口管理技术来跟踪交换机及其端口连接状态。这种手动任务弊大于利…...
redis五大命令kv设计建议内存淘汰
什么是redis?主要作用? redis(remote dictionary server)远程字典服务:是一个开源的使用ANSI C语言编写,支持网络、可基于内存可持久化的日志型、key-value数据库,并提供多种语言的api redis的数据存在内存中ÿ…...
如何真正认识 Linux 系统结构?这篇文章告诉你
Linux 系统一般有 4 个主要部分:内核、shell、文件系统和应用程序。内核、shell 和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。 Linux内核 内核是操作系统的核心,具有很多最基本功能,…...
【移动端网页布局】流式布局案例 ① ( 视口标签设置 | CSS 样式文件设置 | 布局宽度设置 | 设置最大宽度 | 设置最小宽度 )
文章目录 一、视口标签设置二、CSS 样式文件设置三、布局宽度设置1、设置布局宽度2、设置布局最大宽度3、设置布局最小宽度4、查看网页最大最小宽度5、布局宽度设置 四、代码示例1、主界面标签2、CSS 布局设置 一、视口标签设置 参考 【移动端网页布局】移动端网页布局基础概念…...
力扣---LeetCode88. 合并两个有序数组
文章目录 前言88. 合并两个有序数组链接:方法一:三指针(后插)1.2 代码:1.2 流程图:方法二:开辟新空间2.1 代码:2.2 流程图:2.3 注意: 总结 前言 “或许你并不熠熠生辉甚至有点木讷但…...
H7-TOOL的CANFD Trace全解析功能制作完成,历时一个月(2023-04-28)
为了完成这个功能,差不多耗费了一个月时间,精神状态基本已经被磨平了。 当前已经支持: 1、LUA小程序控制,使用灵活。 2、采用SWD接口直接访问目标板芯片的CANFD外设寄存器和CANFD RAM区实现,支持USB,以太网…...
探析Android中的四类性能优化
作者:Yj家的孺子牛 流畅性优化 主线程模型 了解 Android 的流畅性优化之前,我们需要先了解Android的线程结构。在 Android 中,有一个主线程模型,其中所有的绘制以及交互都是在主线程中进行的,所以,当我们…...
ubuntu18.04 安装编译zlmediakit
参考http://www.cherrylord.cn/archives/zlmediakit 1、获取代码 #国内用户推荐从同步镜像网站gitee下载 git clone --depth 1 https://gitee.com/xia-chu/ZLMediaKit cd ZLMediaKit #千万不要忘记执行这句命令 git submodule update --init#国内用户推荐…...
C++ -5- 内存管理
文章目录 C语言和C内存管理的区别示例1. C/C 中程序内存区域划分2. C中动态内存管理3.operator new 与 operator delete 函数4.new 和 delete 的实现原理5.定位new表达式 C语言和C内存管理的区别示例 //C语言: struct SListNode {int data;struct SListNode* next; …...
(Linux)在Ubuntu系统中添加新用户并授予root权限
向Ubuntu系统中添加新用户并为其授予root权限的步骤如下: 打开终端Terminal 输入命令: sudo su - 以 root 身份登录. 注: sudo su : 切换root身份, 不携带当前用户环境变量 sudo su - : 切换root身份, 携带当前用户环境变量 输入命令: adduser username 向Ubuntu系统中添…...
AttributeError: ‘ChatGLMModel‘ object has no attribute ‘prefix_encoder‘
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
Huggingface的GenerationConfig 中的top_k与top_p详细解读
Huggingface的GenerationConfig 中的top_k与top_p详细解读 Top_kTop_p联合共用 Top_k top-k是指只保留概率最高的前k个单词,然后基于剩余单词的概率进行归一化,从中随机抽取一个单词作为最终输出。这种方法可以限制输出序列的长度,并仍然保持…...
学生信息管理系统简易版(文件读写操作)
功能模块 具体功能如下: 添加学生信息修改学生信息(按学号)排序(分别按总分升序、降序、以及按姓名升序)查找学生(按学号)删除学生查看所有学生信息 数据结构体设计 本表设计一个学生信息的结…...
C/C++每日一练(20230426)
目录 1. 不喜欢带钱的小C 🌟🌟 2. 数组排序 ※ 3. 超级素数 ※ 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 1. 不喜欢带钱的小C 小C不喜欢带钱,…...
halcon灰度积分投影/垂直积分投影
简介:关于灰度投影积分可以用到的场合很多,例如分割字符,分割尺子上的刻度等,适用于有规律的变化这些内容的检测。本文复现了论文《基于深度学习和灰度纹理特征的铁路接触网绝缘子状态检测》中灰度积分投影实现了对绝缘子缺陷位置的检测。见(图1)灰度积分垂直方向投影获得…...
Unity打包的apk在安卓4.4.2盒子上碰到的问题
项目场景: Unity开发的项目需要在安卓4.4.2盒子上运行。 问题描述 1、会出"从顶部向下滑动即可退出全屏模式。"的弹框,这是android4.4的一个特性,叫做沉浸模式(Full-screen Immersive Mode),当app启用该模…...
docker的简单使用(centos7中为例)
安装: yum -y install docker 启动: service start docker 搜索镜像: docker search centos:7.9 下载镜像: docker pull docker.io/18703283952/mycentos 查看所有镜像: docker images 启动并进入镜像:…...
Stable Diffusion人工智能图像合成
AI 图像生成大有来头。新发布的开源图像合成模型称为Stable Diffusion,它允许任何拥有 PC 和像样的 GPU 的人想象出他们能想象到的几乎任何视觉现实。它几乎可以模仿任何视觉风格,如果你给它输入一个描述性的短语,结果就会像魔术一样出现在你…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
