Towards Principled Disentanglement for Domain Generalization
本文用大量的理论论述了基于解纠缠约束优化的域泛化问题。
这篇文章认为以往的文章在解决域泛化问题时所用的方法都是non-trivial的,也就是说没有作严格的证明,是不可解释的,而本文用到大量的定理和推论证明了方法的有效性。
动机
因为域泛化问题是通过在多个源域上训练模型,使模型能在目标域上获得好的效果,所以域泛化问题本质上是学习一个好的域不变语义表示模型。因此本文提出了一个解耦网络,把样本解耦成变化特征和语义特征(变化特征和语义特征是什么意思呢这个之后会详细说明),用生成器辅助语义编码器,使语义编码器能学习到域不变表示。
怎么实现域泛化:
把样本分解成Variation特征和Semantic特征。Variation可以看成是风格特征,Semantic可以看成是内容特征。
通过把样本的内容和风格分离,让Semantic编码器学习域不变表示。
具体做法:
- 输入:一组样本数量有限的数据这些数据可以来自不同源域
- Variation Encoder:学习Variation特征,也就是风格特征(比如图中学习的是旋转角度),与内容无关
- Semantic Encoder:学习语义特征,也就是类别特征,与域无关
因此两个Encoder实现了风格和类别的解耦。 - Generator:生成带有V的风格和S类别的样本

把一个样本xi输入到Semantic Encoder中,把另一个样本xj输入到Variation Encoder中,(这俩样本可能不是同一个域),让Generator学习生成带有V的风格和S类别的样本
Semantic Encoder与Generator本来是对抗关系,
,也就是训练Decoder使损失尽可能大,训练Semantic Encoder使损失尽可能小,但这篇文章没有用到复杂的生成对抗损失,而是转换成了计算简单的约束优化问题:

如何理解约束优化公式?
约束条件的含义:同分布样本x,x’ 经过fs和fv,输出向量,concat后输入generator里,输出的样本与原始输入到fs里的样本x的距离要小于一个约束y
对约束优化公式的解释:
我们先不看约束条件。假设没有约束条件,就是一个最简单的交叉熵损失解决分类问题。那么学习到的fs(θ)既考虑到了内容信息也考虑到了风格信息,所以没有域泛化的特点。
那么怎么才能实现域泛化?给该损失添加一个约束。根据定义1(下面有解释)可知,如果x与x’同分布,Decoder就会生成x,这样就满足约束条件。而定义1的成立是在fs对于所有的域都具有不变性的前提下的(见定义1)。如果fs只考虑当前域,Decoder生成的结果就会偏离x,就会不满足约束条件。因此这个约束条件就把fs限制住了,让它对于所有域都具有不变性。
综上得知约束优化的含义:在保证fs对于所有域都具有不变性的前提下(约束条件),使fs在当前域有一个正确的输出标签(损失函数)。
那么问题又来了,如何训练Decoder保证向量充分解耦时才能得到正确的输出?(暂时还没看)
损失函数及训练过程
损失函数就是上面约束优化公式的变体,其中第一项是约束优化公式中的交叉熵损失,第二项就是约束条件,由于约束优化问题在边界取得最值,所以直接让d()-y逼近0即可满足约束条件。
(有个问题,xi和xj不一定是同一个域的啊)


[27]表明,在某些条件下,即使是标准的经验风险最小化,也可能优于许多最近提出的模型。
以更小的计算量实现了更好的效果。
以下这些定理推论主要目的是推出公式(5)
1、基于解纠缠的不变性:x和x’分别是semantic和variation的输入,如果x和x’同分布,那么Generator的输出=x

2、基于解纠缠的域迁移:无论x与x’是否同分布,x输入semantic的分布与Generator输出的X经过semantic的分布是相同的

相关文章:
Towards Principled Disentanglement for Domain Generalization
本文用大量的理论论述了基于解纠缠约束优化的域泛化问题。 这篇文章认为以往的文章在解决域泛化问题时所用的方法都是non-trivial的,也就是说没有作严格的证明,是不可解释的,而本文用到大量的定理和推论证明了方法的有效性。 动机 因为域泛…...
计算机网络学习02
1、TCP 与 UDP 的区别? 是否面向连接 : UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。是否是可靠传输: 远地主机在收到 UDP 报文后&…...
网络交换机端口管理工具
如今,企业或组织级网络使用数百个交换机端口作为其 IT 基础架构的一部分来实现网络连接。这使得交换机端口管理成为日常网络管理任务的一部分。传统上,网络管理员必须依靠手动网络交换机端口管理技术来跟踪交换机及其端口连接状态。这种手动任务弊大于利…...
redis五大命令kv设计建议内存淘汰
什么是redis?主要作用? redis(remote dictionary server)远程字典服务:是一个开源的使用ANSI C语言编写,支持网络、可基于内存可持久化的日志型、key-value数据库,并提供多种语言的api redis的数据存在内存中ÿ…...
如何真正认识 Linux 系统结构?这篇文章告诉你
Linux 系统一般有 4 个主要部分:内核、shell、文件系统和应用程序。内核、shell 和文件系统一起形成了基本的操作系统结构,它们使得用户可以运行程序、管理文件并使用系统。 Linux内核 内核是操作系统的核心,具有很多最基本功能,…...
【移动端网页布局】流式布局案例 ① ( 视口标签设置 | CSS 样式文件设置 | 布局宽度设置 | 设置最大宽度 | 设置最小宽度 )
文章目录 一、视口标签设置二、CSS 样式文件设置三、布局宽度设置1、设置布局宽度2、设置布局最大宽度3、设置布局最小宽度4、查看网页最大最小宽度5、布局宽度设置 四、代码示例1、主界面标签2、CSS 布局设置 一、视口标签设置 参考 【移动端网页布局】移动端网页布局基础概念…...
力扣---LeetCode88. 合并两个有序数组
文章目录 前言88. 合并两个有序数组链接:方法一:三指针(后插)1.2 代码:1.2 流程图:方法二:开辟新空间2.1 代码:2.2 流程图:2.3 注意: 总结 前言 “或许你并不熠熠生辉甚至有点木讷但…...
H7-TOOL的CANFD Trace全解析功能制作完成,历时一个月(2023-04-28)
为了完成这个功能,差不多耗费了一个月时间,精神状态基本已经被磨平了。 当前已经支持: 1、LUA小程序控制,使用灵活。 2、采用SWD接口直接访问目标板芯片的CANFD外设寄存器和CANFD RAM区实现,支持USB,以太网…...
探析Android中的四类性能优化
作者:Yj家的孺子牛 流畅性优化 主线程模型 了解 Android 的流畅性优化之前,我们需要先了解Android的线程结构。在 Android 中,有一个主线程模型,其中所有的绘制以及交互都是在主线程中进行的,所以,当我们…...
ubuntu18.04 安装编译zlmediakit
参考http://www.cherrylord.cn/archives/zlmediakit 1、获取代码 #国内用户推荐从同步镜像网站gitee下载 git clone --depth 1 https://gitee.com/xia-chu/ZLMediaKit cd ZLMediaKit #千万不要忘记执行这句命令 git submodule update --init#国内用户推荐…...
C++ -5- 内存管理
文章目录 C语言和C内存管理的区别示例1. C/C 中程序内存区域划分2. C中动态内存管理3.operator new 与 operator delete 函数4.new 和 delete 的实现原理5.定位new表达式 C语言和C内存管理的区别示例 //C语言: struct SListNode {int data;struct SListNode* next; …...
(Linux)在Ubuntu系统中添加新用户并授予root权限
向Ubuntu系统中添加新用户并为其授予root权限的步骤如下: 打开终端Terminal 输入命令: sudo su - 以 root 身份登录. 注: sudo su : 切换root身份, 不携带当前用户环境变量 sudo su - : 切换root身份, 携带当前用户环境变量 输入命令: adduser username 向Ubuntu系统中添…...
AttributeError: ‘ChatGLMModel‘ object has no attribute ‘prefix_encoder‘
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
Huggingface的GenerationConfig 中的top_k与top_p详细解读
Huggingface的GenerationConfig 中的top_k与top_p详细解读 Top_kTop_p联合共用 Top_k top-k是指只保留概率最高的前k个单词,然后基于剩余单词的概率进行归一化,从中随机抽取一个单词作为最终输出。这种方法可以限制输出序列的长度,并仍然保持…...
学生信息管理系统简易版(文件读写操作)
功能模块 具体功能如下: 添加学生信息修改学生信息(按学号)排序(分别按总分升序、降序、以及按姓名升序)查找学生(按学号)删除学生查看所有学生信息 数据结构体设计 本表设计一个学生信息的结…...
C/C++每日一练(20230426)
目录 1. 不喜欢带钱的小C 🌟🌟 2. 数组排序 ※ 3. 超级素数 ※ 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 1. 不喜欢带钱的小C 小C不喜欢带钱,…...
halcon灰度积分投影/垂直积分投影
简介:关于灰度投影积分可以用到的场合很多,例如分割字符,分割尺子上的刻度等,适用于有规律的变化这些内容的检测。本文复现了论文《基于深度学习和灰度纹理特征的铁路接触网绝缘子状态检测》中灰度积分投影实现了对绝缘子缺陷位置的检测。见(图1)灰度积分垂直方向投影获得…...
Unity打包的apk在安卓4.4.2盒子上碰到的问题
项目场景: Unity开发的项目需要在安卓4.4.2盒子上运行。 问题描述 1、会出"从顶部向下滑动即可退出全屏模式。"的弹框,这是android4.4的一个特性,叫做沉浸模式(Full-screen Immersive Mode),当app启用该模…...
docker的简单使用(centos7中为例)
安装: yum -y install docker 启动: service start docker 搜索镜像: docker search centos:7.9 下载镜像: docker pull docker.io/18703283952/mycentos 查看所有镜像: docker images 启动并进入镜像:…...
Stable Diffusion人工智能图像合成
AI 图像生成大有来头。新发布的开源图像合成模型称为Stable Diffusion,它允许任何拥有 PC 和像样的 GPU 的人想象出他们能想象到的几乎任何视觉现实。它几乎可以模仿任何视觉风格,如果你给它输入一个描述性的短语,结果就会像魔术一样出现在你…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
归并排序:分治思想的高效排序
目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法,由约翰冯诺伊曼在1945年提出。其核心思想包括: 分割(Divide):将待排序数组递归地分成两个子…...
Linux基础开发工具——vim工具
文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...
