当前位置: 首页 > news >正文

每日学术速递4.26

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理  

Subjects: cs.CV

1.AutoNeRF: Training Implicit Scene Representations with Autonomous Agents

标题:AutoNeRF:使用自主代理训练隐式场景表示

作者:Pierre Marza, Laetitia Matignon, Olivier Simonin, Dhruv Batra, Christian Wolf, Devendra Singh Chaplot

文章链接:https://arxiv.org/abs/2304.11241

项目代码:https://pierremarza.github.io/projects/autonerf/

摘要:

        神经辐射场 (NeRF) 等隐式表示已被证明在新视图合成方面非常有效。然而,这些模型通常需要手动和仔细的人类数据收集来进行训练。在本文中,我们介绍了 AutoNeRF,这是一种使用自主体现代理收集训练 NeRF 所需数据的方法。我们的方法允许代理有效地探索看不见的环境,并利用经验自主构建隐式地图表示。我们比较了不同探索策略的影响,包括手工制作的基于前沿的探索和由训练有素的高级规划者和经典的低级路径追随者组成的模块化方法。我们使用针对此问题量身定制的不同奖励函数来训练这些模型,并评估学习表示在四种不同下游任务上的质量:经典视点渲染、地图重建、规划和姿态优化。实证结果表明,NeRF 可以在未见过的环境中仅使用一次经验就可以根据主动收集的数据进行训练,并且可以用于多个下游机器人任务,并且经过模块化训练的探索模型明显优于经典基线。

2.Segment Anything in 3D with NeRFs

标题:使用 NeRFs 在 3D 中分割任何东西

作者:Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Wei Shen, Lingxi Xie, Xiaopeng Zhang, Qi Tian

文章链接:https://arxiv.org/abs/2304.12308

项目代码:https://jumpat.github.io/SA3D/

摘要:

        Segment Anything Model (SAM) 已证明其在各种 2D 图像中分割任何对象/部分的有效性,但其 3D 能力尚未得到充分探索。现实世界由无数的 3D 场景和物体组成。由于可访问的 3D 数据稀缺及其获取和注释的高成本,将 SAM 提升到 3D 是一个具有挑战性但有价值的研究途径。考虑到这一点,我们提出了一个新的框架来在 3D 中分割任何东西,称为 SA3D。给定神经辐射场 (NeRF) 模型,SA3D 允许用户在单个渲染视图中仅通过一次性手动提示获得任何目标对象的 3D 分割结果。根据输入提示,SAM 从相应的视图中剪切出目标对象。获得的 2D 分割蒙版通过密度引导逆渲染投影到 3D 蒙版网格上。然后渲染来自其他视图的 2D 蒙版,这些蒙版大部分未完成,但用作跨视图自我提示以再次输入 SAM。可以获得完整的蒙版并将其投影到蒙版网格上。此过程通过迭代方式执行,最终可以学习到准确的 3D 蒙版。SA3D无需任何额外的重新设计即可有效适应各种辐射场。整个分割过程可以在大约两分钟内完成,无需任何工程优化。我们的实验证明了 SA3D 在不同场景中的有效性,突出了 SAM 在 3D 场景感知中的潜力。

Subjects: cs.AI

3.CLaMP: Contrastive Language-Music Pre-training for Cross-Modal Symbolic Music Information Retrieval

标题:CLaMP:用于跨模态符号音乐信息检索的对比语言-音乐预训练

作者:Shangda Wu, Dingyao Yu, Xu Tan, Maosong Sun

文章链接:https://arxiv.org/abs/2304.11029

项目代码:https://github.com/microsoft/muzic/tree/main/clamp

摘要:

        我们介绍了 CLaMP:对比语言-音乐预训练,它使用音乐编码器和文本编码器通过对比损失联合训练来学习自然语言和符号音乐之间的跨模态表示。为了预训练 CLaMP,我们收集了 140 万个音乐文本对的大型数据集。它采用文本丢失作为数据增强技术和条形修补来有效地表示音乐数据,从而将序列长度减少到不到 10%。此外,我们开发了一个掩码音乐模型预训练目标,以增强音乐编码器对音乐背景和结构的理解。CLaMP 集成了文本信息,可以对符号音乐进行语义搜索和零样本分类,超越了之前模型的能力。为了支持语义搜索和音乐分类的评估,我们公开发布了 WikiMusicText (WikiMT),这是一个包含 1010 个 ABC 符号表的数据集,每个表都附有标题、艺术家、流派和描述。与需要微调的最先进模型相比,零样本 CLaMP 在面向分数的数据集上表现出相当或更优的性能。我们的模型和代码可从这个 https URL 获得。

更多Ai资讯:公主号AiCharm
在这里插入图片描述

相关文章:

每日学术速递4.26

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.AutoNeRF: Training Implicit Scene Representations with Autonomous Agents 标题:AutoNeRF:使用自主代理训练隐式场景表示 作者:Pierre Marz…...

RabbitMQ使用StringRedisTemplate-防止重复消费

造成重复消费的原因: MQ向消费者推送message,消费者向MQ返回ack,告知所推送的消息消费成功。但是由于网络波动等原因,可能造成消费者向MQ返回的ack丢失。MQ长时间(一分钟)收不到ack,于是会向消…...

临沂大学张继群寄语

目录 寄语 1、不能有不良睹好 2、坚毅的个性和勤奋的品质 3、会存钱...

线程学习笔记

1:Thread 线程的生命周期控制 2:Runnable 可执行的任务和程序 3:Callable 执行程序后返回结果 4:Future 收集程序返回结果 5:Executor 线程池 6:ForkJoin 默认线程池 每个线程有工作队列 工作窃取 7:RunnableFuture FutureTask 实现 Runnable 和 Future 执…...

代码随想录算法训练营第四十二天|01背包问题,你该了解这些!、01背包问题,你该了解这些! 滚动数组 、416. 分割等和子集

文章目录 01背包问题,你该了解这些!01背包问题,你该了解这些! 滚动数组416. 分割等和子集 01背包问题,你该了解这些! 题目链接:代码随想录 二维数组解决0-1背包问题 解题思路: 1.dp…...

结构体指针、数组指针和结构体数组指针

结构体指针 首先让我们定义结构体: struct stu { char name[20]; long number; float score[4]; }; 再定义指向结构体类型变量的指针变量: struct stu *student; /*定义结构体类型指针*/ student malloc(sizeof(struct stu)); /*为指针变量分…...

项目架构一些注意点

考虑系统的 稳定性 一、微服务的稳定性 1、如何解决那些不稳定的因素/问题?也是常说的如何容错。 2、一个系统的高可用取决于它本身和其强依赖的组件的高可用 3、消除单点 保活机制 健康检查 注册中心如何保障稳定性 注册中心集群 微服务本身对注册信息的本地持…...

Forefront GPT-4免费版:开启无限畅聊时代,乐享人工智能快感,无限制“白嫖”,还能和N多角色一起聊天?赶紧注册,再过些时间估计就要收费了

目录 前言注册登录方式应用体验聊天体验绘图体验 “是打算先免费后收费吗?”建议其它资料下载 前言 近期,人工智能技术迎来重大飞跃,OpenAI的ChatGPT等工具成为全球数亿人探索提高生产力和增强创造力的新方法。人们现在可以使用人工智能驱动…...

深入浅出 Compose Compiler(1) Kotlin Compiler KCP

前言 Compose 的语法简洁、代码效率非常高,这主要得益于 Compose Compiler 的一系列编译期魔法,帮开发者生成了很多样板代码。但编译期插桩也阻碍了我们对于 Compose 运行原理的认知,想要真正读懂 Compose 就必须先了解它的 Compiler。本系列…...

BatchNormalization和LayerNormalization的理解、适用范围、PyTorch代码示例

文章目录 为什么要NormalizationBatchNormLayerNormtorch代码示例 学习神经网络归一化时,文章形形色色,但没找到适合小白通俗易懂且全面的。学习过后,特此记录。 为什么要Normalization 当输入数据量级极大或极小时,为保证输出数…...

大数据 | 实验二:文档倒排索引算法实现

文章目录 📚实验目的📚实验平台📚实验内容🐇在本地编写程序和调试🥕代码框架思路🥕代码实现 🐇在集群上提交作业并执行🥕在集群上提交作业并执行,同本地执行相比即需修改…...

Java文档注释-JavaDoc标签

标签含义author指定作者{code}使用代码字体以原样显示信息,不处理HTML样式deprecated指定程序元素已经过时{docRoot}指定当前文档的根目录路径exception标识由方法或构造函数抛出的异常{inheritDoc}从直接超类中继承注释{link}插入指向另外一个主题的内联链接{linkp…...

黑盒测试过程中【测试方法】详解5-输入域,输出域,猜错法

在黑盒测试过程中,有9种常用的方法:1.等价类划分 2.边界值分析 3.判定表法 4.正交实验法 5.流程图分析 6.因果图法 7.输入域覆盖法 8.输出域覆盖法 9.猜错法 黑盒测试过程中【测试方法】讲解1-等价类,边界值,判定表_朝一…...

Python学习之sh(shell脚本)在Python中的使用

文章目录 前言一、sh是什么?二、使用步骤1.安装2.使用示例3.使用sh执行命令4.关键字参数5.查找命令6.Baking参数 前言 本文章向大家介绍[Python库]分析一个python库–sh(系统调用),主要内容包括其使用实例、应用技巧、基本知识点…...

追求卓越:编写高质量代码的方法和技巧

本文讨论了编写高质量代码的重要性,并详细介绍了高质量代码的特征、编程实践技巧和软件工程方法论。通过遵循这些原则和实践,程序员可以编写出更稳定、可维护和可扩展的代码。 一、 前言 写出高质量代码是每个程序员的追求和目标。高质量的代码可以使程…...

MATLAB算法实战应用案例精讲-【人工智能】机器视觉(概念篇)(最终篇)

目录 前言 几个高频面试题目 如何评价一个光源的好坏? 如何依靠光源增强图像对比度?...

【老王读SpringMVC-3】根据 url 是如何找到 controller method 的?

前面分析了 request 与 handler method 映射关系的注册,现在再来分析一下 SpringMVC 是如何根据 request 来获取对应的 handler method 的? 可能有人会说,既然已经将 request 与 handler method 映射关系注册保存在了 AbstractHandlerMethodMapping.Ma…...

人机交互到艺术设计及玫瑰花绘制实例

Python库之图形用户界面 Riverbank Computing | Introduction Welcome to wxPython! | wxPython Overview — PyGObject Python库之游戏开发 https://www.pygame.org/news Panda3D | Open Source Framework for 3D Rendering & Games python.cocos2d.org Python库之…...

多臂老虎机问题

1.问题简介 多臂老虎机问题可以被看作简化版的强化学习问题,算是最简单的“和环境交互中的学习”的一种形式,不存在状态信息,只有动作和奖励。多臂老虎机中的探索与利用(exploration vs. exploitation)问题一直以来都…...

DNS 查询原理详解

DNS(Domain Name System)是互联网上的一种命名系统,它将域名转换为IP地址。在进行DNS查询时,先要明确需要查询的主机名,然后向本地DNS服务器发出查询请求。 1. 本地DNS服务器查询 当用户在浏览器中输入一个URL或者点…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

大数据学习(132)-HIve数据分析

​​​​🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言&#x1f4…...