多臂老虎机问题
1.问题简介
多臂老虎机问题可以被看作简化版的强化学习问题,算是最简单的“和环境交互中的学习”的一种形式,不存在状态信息,只有动作和奖励。多臂老虎机中的探索与利用(exploration vs. exploitation)问题一直以来都是一个特别经典的问题,理解它能够帮助我们学习强化学习。
2.问题介绍
2.1问题定义
在多臂老虎机(multi-armed bandit,MAB)问题中,有一个拥有 K根拉杆的老虎机,拉动每一根拉杆都对应一个关于奖励的概率分布R。我们每次拉动其中一根拉杆,就可以从该拉杆对应的奖励概率分布中获得一个奖励 。我们在各根拉杆的奖励概率分布未知的情况下,从头开始尝试,目标是在操作 T次拉杆后获得尽可能高的累积奖励。由于奖励的概率分布是未知的,因此我们需要在“探索拉杆的获奖概率”和“根据经验选择获奖最多的拉杆”中进行权衡。

2.2形式化描述
多臂老虎机问题可以表示为一个元组,其中:
- A为动作集合,其中一个动作表示拉动一个拉杆。若多臂老虎机一共有K根拉杆,那动作空间就是集合
,我们用
表示任意一个动作;
- R为奖励概率分布,拉动每一根拉杆的动作a都对应一个奖励概率分布R(r|a),拉动不同拉杆的奖励分布通常是不同的。
假设每个时间步只能拉动一个拉杆,多臂老虎机的目标为最大化一段时间步T内累积的奖励:
其中表示在第t时间步拉动某一拉杆的动作,
表示动作
获得的奖励。
对于每一个动作a,定义其期望奖励为:
![]()
于是,至少存在一根拉杆,它的期望奖励不小于拉动其他任意一根拉杆,我们将该最优期望奖励表示为:
![]()
懊悔(regret)定义为拉动当前拉杆的动作a与最优拉杆的期望奖励差,即 :
累积懊悔(cumulative regret)即操作 T次拉杆后累积的懊悔总量,对于一次完整的T步决策,累积懊悔为 :

MAB 问题的目标为最大化累积奖励,等价于最小化累积懊悔。
为了知道拉动哪一根拉杆能获得更高的奖励,我们需要估计拉动这根拉杆的期望奖励。由于只拉动一次拉杆获得的奖励存在随机性,所以需要多次拉动一根拉杆,然后计算得到的多次奖励的期望,其算法流程如下所示:

以上 for 循环中的第四步如此更新估值,是因为这样可以进行增量式的期望更新,为什么不按照常规方法将所有数求和再除以次数呢?具体原因如下:
因为如果将所有数求和再除以次数,其缺点是每次更新的时间复杂度和空间复杂度均为 O(n)。而采用增量式更新,时间复杂度和空间复杂度均为O(1) 。
3. 代码实现
以下代码来实现一个拉杆数为 10 的多臂老虎机。其中拉动每根拉杆的奖励服从伯努利分布(Bernoulli distribution),即每次拉下拉杆有P的概率获得的奖励为 1,有1-P的概率获得的奖励为 0。奖励为 1 代表获奖,奖励为 0 代表没有获奖。
# 导入需要使用的库,其中numpy是支持数组和矩阵运算的科学计算库,而matplotlib是绘图库
import numpy as np
import matplotlib.pyplot as pltclass BernoulliBandit:""" 伯努利多臂老虎机,输入K表示拉杆个数 """def __init__(self, K):self.probs = np.random.uniform(size=K) # 随机生成K个0~1的数,作为拉动每根拉杆的获奖# 概率self.best_idx = np.argmax(self.probs) # 获奖概率最大的拉杆self.best_prob = self.probs[self.best_idx] # 最大的获奖概率self.K = Kdef step(self, k):# 当玩家选择了k号拉杆后,根据拉动该老虎机的k号拉杆获得奖励的概率返回1(获奖)或0(未# 获奖)if np.random.rand() < self.probs[k]:return 1else:return 0np.random.seed(1) # 设定随机种子,使实验具有可重复性
K = 10
bandit_10_arm = BernoulliBandit(K)
print("随机生成了一个%d臂伯努利老虎机" % K)
print("获奖概率最大的拉杆为%d号,其获奖概率为%.4f" %(bandit_10_arm.best_idx, bandit_10_arm.best_prob))
接下来我们用一个 Solver 基础类来实现上述的多臂老虎机的求解方案。需要实现下列函数功能:根据策略选择动作、根据动作获取奖励、更新期望奖励估值、更新累积懊悔和计数。在下面的 MAB 算法基本框架中,我们将根据策略选择动作、根据动作获取奖励和更新期望奖励估值放在 run_one_step() 函数中,由每个继承 Solver 类的策略具体实现。而更新累积懊悔和计数则直接放在主循环 run() 中。
class Solver:""" 多臂老虎机算法基本框架 """def __init__(self, bandit):self.bandit = banditself.counts = np.zeros(self.bandit.K) # 每根拉杆的尝试次数self.regret = 0. # 当前步的累积懊悔self.actions = [] # 维护一个列表,记录每一步的动作self.regrets = [] # 维护一个列表,记录每一步的累积懊悔def update_regret(self, k):# 计算累积懊悔并保存,k为本次动作选择的拉杆的编号self.regret += self.bandit.best_prob - self.bandit.probs[k]self.regrets.append(self.regret)def run_one_step(self):# 返回当前动作选择哪一根拉杆,由每个具体的策略实现raise NotImplementedErrordef run(self, num_steps):# 运行一定次数,num_steps为总运行次数for _ in range(num_steps):k = self.run_one_step()self.counts[k] += 1self.actions.append(k)self.update_regret(k)
相关文章:
多臂老虎机问题
1.问题简介 多臂老虎机问题可以被看作简化版的强化学习问题,算是最简单的“和环境交互中的学习”的一种形式,不存在状态信息,只有动作和奖励。多臂老虎机中的探索与利用(exploration vs. exploitation)问题一直以来都…...
DNS 查询原理详解
DNS(Domain Name System)是互联网上的一种命名系统,它将域名转换为IP地址。在进行DNS查询时,先要明确需要查询的主机名,然后向本地DNS服务器发出查询请求。 1. 本地DNS服务器查询 当用户在浏览器中输入一个URL或者点…...
浅谈软件测试工程师的技能树
软件测试工程师是一个历史很悠久的职位,可以说从有软件开发这个行业以来,就开始有了软件测试工程师的角色。随着时代的发展,软件测试工程师的角色和职责也在悄然发生着变化,从一开始单纯的在瀑布式开发流程中担任测试阶段的执行者…...
转型产业互联网,新氧能否再造辉煌?
近年来,“颜值经济”推动医美行业快速发展,在利润驱动下,除了专注医美赛道的企业之外,也有不少第三方互联网平台正强势进入医美领域,使以新氧为代表的医美企业面对不小发展压力,同时也展现出强大的发展韧性…...
CRE66365 应用资料
CRE66365是一款高度集成的电流模式PWM控制IC,为高性能、低待机功耗和低成本的隔离型反激转换器。在正常负载条件下,AC输入高电压下工作在QR模式。为了最大限度地减少开关损耗,QR 模式下的最大开关频率被内部限制为 77kHz。当负载较低时&#…...
vue3快速上手学习笔记,还不快来看看?
Vue3快速上手 1.Vue3简介 2020年9月18日,Vue.js发布3.0版本,代号:One Piece(海贼王)耗时2年多、2600次提交、30个RFC、600次PR、99位贡献者github上的tags地址:https://github.com/vuejs/vue-next/release…...
HDU 5927 Auxiliary Set
原题链接: https://acm.hdu.edu.cn/showproblem.php?pid5927 题意: 有一颗根节点是1的树,其中有重要的点和不重要的点,重要的点需满足以下两个条件至少一个: 1.本来就是重要的点 2.是两个重要的点的最近共同祖先 有t…...
24:若所有参数皆需类型转换,请为此采用non-member函数
令class支持隐式类型转换通常是个糟糕的主意。 这条规则有其例外,最常见的例外是在建立数值类型时。 例,假设你设计一个class用来表现有理数,则允许整数“隐式转换”为有理数就很合理。 class Rational{ public:Rational(int numerator0,i…...
CMake(2)-详解-编译-安装-支持GDB-添加环境检查-添加版本号-生成安装包
目录 1.什么是CMake 1.1 编译流程CMakeLists.txt a) 最简单 demo1 b) 常用demo2 c) 单目录,源文件-输出文件 DIR_SRCS中 d)多目录,多源文件 1.2.执行命令: 1.3.自定义编译选项 2.安装和测试 3.支持GDB 4.添加环境检查 5.添加…...
java面试题(redis)
目录 1.redis主要消耗什么物理资源? 2.单线程为什么快 3.为什么要使用Redis 4.简述redis事务实现 5.redis缓存读写策略 6.redis除了做缓存,还能做些什么? 7.redis主从复制的原理 8.Redis有哪些数据结构?分别有哪些典型的应…...
Vue组件懒加载
组件懒加载 前言 组件懒加载最常用于异步加载大型/复杂组件或在需要时才进行加载 Vue 2和Vue 3均支持组件懒加载,本文将介绍如何在Vue 2和Vue 3中实现组件懒加载,和一些使用场景 1️⃣方法一:使用Webpack的代码分割能力 Vue 2和Vue 3都可以…...
Qt音视频开发42-网络推流(视频推流/本地摄像头推流/桌面推流/网络摄像头转发推流等)
一、前言 上次实现的文件推流,尽管优点很多,但是只能对现在存在的生成好的音视频文件推流,而现在更多的场景是需要将实时的视频流重新推流分发,用户在很多设备比如手机/平板/网页/电脑/服务器上观看,这样就可以很方便…...
更简单的存取Bean方式-@Bean方法注解
1.Bean方法存储 类注解是添加在某个类上的,那么方法注解是添加在某个方法前的 public class UserBeans {Beanpublic User user1(){User user new User();user.setUid(001);user.setUname("zhangsan");user.setAge(19);user.setPassword("123123");retur…...
边缘计算与AI布署应用电力物联网解决方案-RK3588开发平台
电力行业拥有规模庞大的各类设备,如电表、各类保护、采集、控制设备。面对分布式发电、储能、用户微网等一系列综合问题,边缘计算与AI布署可满足“端侧本地化”高效运用的需求,协助提升最后一公里运行效率。 瑞芯微RK3588J、内置独立NPU&…...
centos部署unity accelerator
参考 https://docs.unity3d.com/Manual/UnityAccelerator.html 方案1:下载Unity Accelerator 手动安装, unity-accelerator-app-v1.0.941g6b39b61.AppImage为下载的文件 1、放入服务器目录, chmod x unity-accelerator-app-v1.0.941g6b39b61.AppImage 2…...
HANA开发指南
建模方面 1、建模方式:图像化建模、SQL建模、CE语言建模 2、维护:SQL和CE比图形化建模更容易维护和修改 3、性能:图形化和CE会经过系统优化,性能一般优于SQL语言 4、可按需要设置参数、变量、Hierachy、聚合类型等 5、在S4系…...
请问你见过吐代码的泡泡吗(冒泡排序)
🤩本文作者:大家好,我是paperjie,感谢你阅读本文,欢迎一建三连哦。 🥰内容专栏:这里是《算法详解》,笔者用重金(时间和精力)打造,将算法知识一网打尽,希望可以…...
【VM服务管家】VM4.0平台SDK_2.1环境配置类
目录 2.1.1 环境配置:CSharp二次开发环境配置方法2.1.2 环境配置:Qt二次开发环境配置方法2.1.3 环境配置:MFC二次开发环境配置方法2.1.4 环境配置:VB.Net二次开发环境配置方法2.1.5 环境配置:运行出现Vm.Core.Solution…...
最新研究:可审计的具有拜占庭鲁棒的联邦学习方案
Y. Liang, Y. Li and B. -S. Shin, “Auditable Federated Learning With Byzantine Robustness,” in IEEE Transactions on Computational Social Systems, doi: 10.1109/TCSS.2023.3266019. 可免费下载:https://download.csdn.net/download/liangyihuai/87727720…...
JDK1.8下载、安装和环境配置教程
🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🦾🦾 目录 window系统安装java 下载JDK 配置环境变量 …...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...
