当前位置: 首页 > news >正文

有符号数和无符号数左移和右移

主要是有符号数的左移。
有的说不管符号位,直接左移,所以可以一会正数一会复数
https://bbs.csdn.net/topics/391075092
有的说符号位不动,其他来左移
不明白了。。。。
https://blog.csdn.net/hnjzsyjyj/article/details/119721014
https://wenku.baidu.com/view/6e31935402f69e3143323968011ca300a6c3f60d.html?wkts=1682661838416

算术移位对应有符号位数,逻辑移位对应无符号位数

左移与符号无关,都是逻辑左移(对应SHL指令),而右移无符号数做逻辑右移(对应SHR指令)、有符号数做算术右移(对应SAR指令)。 不过这也是与语言相关的,在Pascal中,移位一律是逻辑移位,算术移位要用乘除。

对于无符号数的左移和右移,因为不涉及到符号位的问题,比较好理解:
左移低位补零,高位舍弃
右移高位补零,低位舍弃

对于有符号数的左移和右移,因为符号位的参与,可能各个编译器的实现方式上有差别
我在/home/utils/gcc-5.2.0/bin/g++ 这个g++编译器的版本上试了下:
左移低位补零,高位舍弃(和无符号数的实现相同),这意味着本来一个正数,在移位的过程中,可能一会儿变成负数,一会儿又变回正数,然后再变负数···这种跳跃的情况。
右移高位补符号位,低位舍弃。所以如果一个int类型的-1, 进行右移操作,无论进行多少次,结果仍然为-1,因为-1 = 1111 1111 1111 1111 1111 1111 1111 1111b.

另外,char类型,其实是一个int8_t类型,是一个有符号的8bit整数类型。
————————————————
:https://blog.csdn.net/baidu_35679960/article/details/124510929

相关文章:

有符号数和无符号数左移和右移

主要是有符号数的左移。 有的说不管符号位,直接左移,所以可以一会正数一会复数 https://bbs.csdn.net/topics/391075092 有的说符号位不动,其他来左移 不明白了。。。。 https://blog.csdn.net/hnjzsyjyj/article/details/119721014 https://…...

Netty小白入门教程

一、概述 1.1 概念 Netty是一个异步的基于事件驱动(即多路复用技术)的网络应用框架,用于快速开发可维护、高性能的网络服务器和客户端。 1.2 地位 Netty在Java网络应用框架中的地位就好比,Spring框架在JavaEE开发中的地位。 以下的框架都使用了Nett…...

【逻辑位移和算数位移】

<< 运算符 && >> 运算符 正数位移 当 x>>n 中 x 为正数时&#xff0c;会将x的所有位右移x位&#xff0c;同时左边高位补0 显而易见&#xff0c;运算结束后&#xff0c;值为1 。 可知右移n位&#xff0c;结果就是 x / 2^n&#xff1a;7 / 2 ^2 1;…...

Blender3.5 边的操作

目录 1. 边操作1.1 边的细分 Subdivide1.2 边的滑移 Edge Slide1.3 边的删除1.4 边的溶解 Dissolve1.5 边线倒角 Bevel1.6 循环边 Loop Edges1.7 并排边 Ring Edges1.8 桥接循环边 1. 边操作 1.1 边的细分 Subdivide 在边选择模式&#xff0c;选中一条边&#xff0c;右键&…...

Java与Python、Node.js在人工智能和区块链应用程序开发中的比较

背景 Java、Python和Node.js都是常用的编程语言,它们在不同领域都有广泛的应用。在人工智能和区块链应用程序开发中,这三种语言都具有各自的优势和劣势。 Java的优势 Java在企业级应用中应用广泛,这得益于其跨平台性、安全性和稳定性等特点。在人工智能和区块链应用程序开…...

【计算机是怎么跑起来的】基础:计算机三大原则

【计算机是怎么跑起来的】基础&#xff1a;计算机三大原则 计算机的三个根本性基础1.计算机是执行输入&#xff0c;运算&#xff0c;输出的机器输入&#xff0c;运算&#xff0c;输出 2. 软件是指令和数据的集合指令数据 3. 计算机的处理方式有时与人们的思维习惯不同对计算机来…...

NXP公司LPC21XX+PID实现稳定温度控制

本例使用的是LPC21XX系列芯片提供的PWM功能实现稳定的温度控制。首先我们获得当前环境温度之后&#xff0c;再用设定的温度与当前温度相减&#xff0c;通过PID算法计算出当前输出脉宽&#xff0c;并将其输出到L298N模块中&#xff0c;使加热丝发热&#xff0c;形成闭环&#xf…...

【CE实战-生化危机4重置版】实现角色瞬移、飞翔

▒ 目录 ▒ 🛫 导读需求开发环境1️⃣ CE扫描内存,定位坐标地址(加密后的地址)2️⃣ 硬件写入断点,定位真实坐标地址内存写入断点,定位到访问地址分析代码...

强烈建议互联网人转战实体和农业,去了就是降维打击!实体太缺人才了,老板也不缺钱!...

大环境不好&#xff0c;互联网人该何去何从&#xff1f; 一位网友提出了一个新思路&#xff1a;强烈建议互联网同学转战实体、农业这些行业。实体真的太缺人才了&#xff0c;目前大部分实体都留下70后、80后在继续奋斗。其实实体老板很多都不缺钱&#xff0c;经过多年积累&…...

如何将 github pages 迁移到 vercel 上托管

如何将 github pages 迁移到 vercel 上托管 前言 早期网站使用 github pages,后来迁移到 coding,最近又放到腾讯云网站静态托管,无论是 coding 的 cos 存储桶,还是静态网站托管 他们都是收费的,那有没有免费的托管商呢,既不影响网站的访问速度还免费,于是,找了一下,还真有,ve…...

2023五一数学建模竞赛(五一赛)选题建议

提示&#xff1a;DS C君认为的难度&#xff1a;C<A<B&#xff0c;开放度&#xff1a;B<A<C 。 A题&#xff1a;无人机定点投放问题 这道题是传统的物理类题目&#xff0c;基本每次建模竞赛都会有。由于这道题目并未给明数据&#xff0c;所以数据获取和搜集资料是…...

Packet Tracer - 配置 RIPv2

Packet Tracer - 配置 RIPv2 目标 第 1 部分&#xff1a;配置 RIPv2 第 2 部分&#xff1a;验证配置 拓扑图 背景信息 尽管在现代网络中极少使用 RIP&#xff0c;但是作为了解基本网络路由的基础则十分有用。 在本活动中&#xff0c;您将使用适当的网络语句和被动接口配置…...

Android类似微信聊天页面教程(Kotlin)四——数据本地化

前提条件 安装并配置好Android Studio Android Studio Electric Eel | 2022.1.1 Patch 2 Build #AI-221.6008.13.2211.9619390, built on February 17, 2023 Runtime version: 11.0.150-b2043.56-9505619 amd64 VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o. Windows 11 …...

C/C++基础知识

专栏&#xff1a;C/C 个人主页&#xff1a; C/C基础知识 前言C关键字(C98)命名空间命名空间的定义正常的命名空间的定义如何使用命名空间 命名空间可以嵌套同一个工程中允许存在多个相同名称的命名空间&#xff0c;编译器最后会合成同一个命名空间中(一个工程中的.h文件和test.…...

Java 入门 - 语法基础

hello world public class Hello {public static void main(String[] args) {System.out.println("hello world");} } 复制代码 public: 是关键字&#xff1b;表示公开的class: 是关键字&#xff1b;用来定义类Hello: 是类名&#xff1b;大小写敏感&#xff1b;命名…...

Java线程池及拒绝策略详解

前文提到线程的使用以及线程间通信方式&#xff0c;通常情况下我们通过new Thread或者new Runnable创建线程&#xff0c;这种情况下&#xff0c;需要开发者手动管理线程的创建和回收&#xff0c;线程对象没有复用&#xff0c;大量的线程对象创建与销毁会引起频繁GC&#xff0c;…...

GitLABJenkins

GitLAB & Jenkins 目录 实践&#xff1a;基于Jenkins提交流水线(测试成功)-2023.4.25 目的&#xff1a;掌握通过触发器将GitLab和Jenkins集成&#xff0c;实现提交流水线。 1、触发Jenkins构建 安装Generic Webhook Trigger插件 重启后&#xff0c;进入一个Pipeline项目设…...

互联网摸鱼日报(2023-04-26)

互联网摸鱼日报&#xff08;2023-04-26&#xff09; InfoQ 热门话题 神州数码&#xff1a;抢抓云原生发展机遇&#xff0c;共建共治共享 OpenNJet 应用引擎开源生态 《产业数字人才研究与发展报告&#xff08;2023&#xff09;》 如何写出CPU友好的代码&#xff0c;百倍提升…...

石化企业数字化防爆融合通信解决方案

项目背景 石化工业是我国国民经济和社会发展的基础性、战略性产业&#xff0c;其发展和壮大受到了党和国家的高度重视。随着石化企业厂区规模的不断扩大以及技术的快速发展&#xff0c;现有石化企业专网通信系统建设相对滞后&#xff0c;缺乏结合人员管理、安全生产、安全通信…...

NTT学习笔记(快速数论变换)

一些概念 欧拉函数 ϕ ( n ) \phi(n) ϕ(n) 欧拉函数简介 阶 若 g g g和 n n n互质&#xff0c;则令 g x % n 1 g^x\%n1 gx%n1的最小正整数 x x x称为 g g g模 n n n的阶。 原根 对于互质的两个正整数 g g g和 n n n&#xff0c;如果 g g g模 n n n的阶为 ϕ ( n ) \phi…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...