NTT学习笔记(快速数论变换)
一些概念
欧拉函数 ϕ ( n ) \phi(n) ϕ(n)
欧拉函数简介
阶
若 g g g和 n n n互质,则令 g x % n = 1 g^x\%n=1 gx%n=1的最小正整数 x x x称为 g g g模 n n n的阶。
原根
对于互质的两个正整数 g g g和 n n n,如果 g g g模 n n n的阶为 ϕ ( n ) \phi(n) ϕ(n),则称 g g g为 n n n的原根。
求原根
一般的原根都比较小,暴力枚举即可。
NTT
在 F F T FFT FFT中,我们选择 n n n次单位复根作为 x x x的值,因为他们满足消去引理、折半引理、求和引理,所以可以用分治的方法将时间复杂度变为 O ( n log n ) O(n\log n) O(nlogn)。但因为用了复数,所以在精度上有误差。而在一些题目要求的是带模的多项式乘法,所以 F F T FFT FFT就用不了了。那么,我们能不能让 x x x取整数值,使得这个值也能满足消去引理、折半引理、求和引理呢?
设 ϕ ( m ) = r × 2 d \phi(m)=r\times 2^d ϕ(m)=r×2d,令 n = 2 d n=2^d n=2d, x n i = x ϕ ( m ) × i / n ( m o d m ) x_n^i=x^{\phi(m)\times i/n}\pmod m xni=xϕ(m)×i/n(modm),其中 i ≤ n i\leq n i≤n
则 x n i x_n^i xni有以下性质:
1. 消去引理
x d n d k = x n k ( m o d m ) x_{dn}^{dk}=x_n^k\pmod m xdndk=xnk(modm)
证明: x d n d k = x ϕ ( m ) × d k / d n = x ϕ ( m ) × k / n = x n k ( m o d m ) x_{dn}^{dk}=x^{\phi(m)\times dk/dn}=x^{\phi(m)\times k/n}=x_n^k\pmod m xdndk=xϕ(m)×dk/dn=xϕ(m)×k/n=xnk(modm)
2. 折半引理
( x n k + n / 2 ) 2 = x n / 2 k ( m o d m ) (x_n^{k+n/2})^2=x_{n/2}^k \pmod m (xnk+n/2)2=xn/2k(modm)
证明: ( x n k + n / 2 ) 2 = x n 2 k + n = x n 2 k = x n / 2 k ( m o d m ) (x_n^{k+n/2})^2=x_n^{2k+n}=x_n^{2k}=x_{n/2}^k\pmod m (xnk+n/2)2=xn2k+n=xn2k=xn/2k(modm)
3. 求和引理
∑ i = 0 n − 1 ( x n k ) j = 0 ( m o d m ) \sum\limits_{i=0}^{n-1}(x_n^k)^j=0\pmod m i=0∑n−1(xnk)j=0(modm)
证明: ∑ i = 0 n − 1 ( x n k ) j = 1 − ( x n k ) n 1 − x n k = 0 1 − x n k = 0 \sum\limits_{i=0}^{n-1}(x_n^k)^j=\dfrac{1-(x_n^k)^n}{1-x_n^k}=\dfrac{0}{1-x_n^k}=0 i=0∑n−1(xnk)j=1−xnk1−(xnk)n=1−xnk0=0
那么,用 x x x来代替 F F T FFT FFT中的 ω \omega ω,其他不变,就可以求带模数的多项式乘法了。
模数的限制
若模数 m = r × 2 k + 1 m=r\times 2^k+1 m=r×2k+1(其中 r r r为奇数, k k k为整数),则多项式乘积的次数不能超过 2 k 2^k 2k。
如果题目没有模数,那也可以取一个较大的模数,保证答案的每一位都小于这个模数,用这个模数来做 N T T NTT NTT也是可以的。
一些模数的原根
模数 | 原根 | 最大长度 |
---|---|---|
998244353 = 119 × 2 23 + 1 998244353=119\times 2^{23}+1 998244353=119×223+1 | 3 3 3 | 2 23 2^{23} 223 |
469762049 = 7 × 2 26 + 1 469762049=7\times 2^{26}+1 469762049=7×226+1 | 3 3 3 | 2 26 2^{26} 226 |
2281701377 = 17 × 2 27 + 1 2281701377=17\times 2^{27}+1 2281701377=17×227+1 | 3 3 3 | 2 27 2^{27} 227 |
例题
多项式乘法(FFT)
#include<bits/stdc++.h>
using namespace std;
const long long g=3,mod=998244353;
long long w,wn,a1[5000005],a2[5000005];
long long mi(long long t,long long v){if(v==0) return 1;long long re=mi(t,v/2);re=re*re%mod;if(v&1) re=re*t%mod;return re;
}
void ch(long long *a,int l){for(int i=1,j=l/2,k;i<l-1;i++){if(i<j) swap(a[i],a[j]);k=l/2;while(j>=k){j-=k;k>>=1;}j+=k;}
}
void ntt(long long *a,int l,int fl){for(int i=2;i<=l;i<<=1){if(fl==1) wn=mi(g,(mod-1)/i);else wn=mi(g,mod-1-(mod-1)/i);for(int j=0;j<l;j+=i){w=1;for(int k=j;k<j+i/2;k++,w=w*wn%mod){long long t=a[k],u=w*a[k+i/2]%mod;a[k]=(t+u)%mod;a[k+i/2]=(t-u+mod)%mod;}}}if(fl==-1){long long ny=mi(l,mod-2);for(int i=0;i<l;i++) a[i]=a[i]*ny%mod;}
}
int main()
{int n=1,l1,l2;scanf("%d%d",&l1,&l2);++l1;++l2;while(n<l1+l2) n<<=1;for(int i=0;i<l1;i++){scanf("%lld",&a1[i]);}for(int i=0;i<l2;i++){scanf("%lld",&a2[i]);}ch(a1,n);ch(a2,n);ntt(a1,n,1);ntt(a2,n,1);for(int i=0;i<n;i++){a1[i]=a1[i]*a2[i]%mod;}ch(a1,n);ntt(a1,n,-1);for(int i=0;i<l1+l2-1;i++) printf("%lld ",a1[i]);return 0;
}
相关文章:
NTT学习笔记(快速数论变换)
一些概念 欧拉函数 ϕ ( n ) \phi(n) ϕ(n) 欧拉函数简介 阶 若 g g g和 n n n互质,则令 g x % n 1 g^x\%n1 gx%n1的最小正整数 x x x称为 g g g模 n n n的阶。 原根 对于互质的两个正整数 g g g和 n n n,如果 g g g模 n n n的阶为 ϕ ( n ) \phi…...

Android类似微信首页的页面开发教程(Kotlin)二
前提条件 安装并配置好Android Studio Android Studio Electric Eel | 2022.1.1 Patch 2 Build #AI-221.6008.13.2211.9619390, built on February 17, 2023 Runtime version: 11.0.150-b2043.56-9505619 amd64 VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o. Windows 11 …...
PAt A1015 Reversible Primes
1015 Reversible Primes 分数 20 作者 CHEN, Yue 单位 浙江大学 A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its rever…...
解决Lemuroid识别不到蓝牙键盘的问题
Android系统基于libretro的全能游戏模拟器,目前有RetroArch,Kodi,Lemuroid。 而且这三个都是开源免费的APP。 Lemuroid相对前面两个功能比较简陋。也不能自己下载核心。但代码也是最少的。 在使用Lemuroid的时候,发现它不能检测…...

SpringBoot 使用 Sa-Token 完成权限认证
一、设计思路 所谓权限认证,核心逻辑就是判断一个账号是否拥有指定权限: 有,就让你通过。没有?那么禁止访问! 深入到底层数据中,就是每个账号都会拥有一个权限码集合,框架来校验这个集合中是…...

Spring核心与设计思想、创建与使用
文章目录 一、Spring是什么二、为什么要学习框架三、IoC和DI(一)IoC1. 认识IoC2. Spring的核心功能 (二)DI 四、Spring项目的创建(一)使用 Maven 方式创建一个 Spring 项目 五、Spring项目的使用࿰…...
mysql 备份 还原
1:备份 执行命令方案1: /usr/local/mysql/bin/mysqldump -uX -pX -h 127.0.0.1 --set-gtid-purgedOFF --skip-extended-insert --add-drop-table --add-locks --create-options --disable-keys --lock-tables --quick --set-charset -e --max_allowed_packet16777216 --net_b…...

每日学术速递4.26
CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.AutoNeRF: Training Implicit Scene Representations with Autonomous Agents 标题:AutoNeRF:使用自主代理训练隐式场景表示 作者:Pierre Marz…...
RabbitMQ使用StringRedisTemplate-防止重复消费
造成重复消费的原因: MQ向消费者推送message,消费者向MQ返回ack,告知所推送的消息消费成功。但是由于网络波动等原因,可能造成消费者向MQ返回的ack丢失。MQ长时间(一分钟)收不到ack,于是会向消…...
临沂大学张继群寄语
目录 寄语 1、不能有不良睹好 2、坚毅的个性和勤奋的品质 3、会存钱...
线程学习笔记
1:Thread 线程的生命周期控制 2:Runnable 可执行的任务和程序 3:Callable 执行程序后返回结果 4:Future 收集程序返回结果 5:Executor 线程池 6:ForkJoin 默认线程池 每个线程有工作队列 工作窃取 7:RunnableFuture FutureTask 实现 Runnable 和 Future 执…...

代码随想录算法训练营第四十二天|01背包问题,你该了解这些!、01背包问题,你该了解这些! 滚动数组 、416. 分割等和子集
文章目录 01背包问题,你该了解这些!01背包问题,你该了解这些! 滚动数组416. 分割等和子集 01背包问题,你该了解这些! 题目链接:代码随想录 二维数组解决0-1背包问题 解题思路: 1.dp…...
结构体指针、数组指针和结构体数组指针
结构体指针 首先让我们定义结构体: struct stu { char name[20]; long number; float score[4]; }; 再定义指向结构体类型变量的指针变量: struct stu *student; /*定义结构体类型指针*/ student malloc(sizeof(struct stu)); /*为指针变量分…...
项目架构一些注意点
考虑系统的 稳定性 一、微服务的稳定性 1、如何解决那些不稳定的因素/问题?也是常说的如何容错。 2、一个系统的高可用取决于它本身和其强依赖的组件的高可用 3、消除单点 保活机制 健康检查 注册中心如何保障稳定性 注册中心集群 微服务本身对注册信息的本地持…...

Forefront GPT-4免费版:开启无限畅聊时代,乐享人工智能快感,无限制“白嫖”,还能和N多角色一起聊天?赶紧注册,再过些时间估计就要收费了
目录 前言注册登录方式应用体验聊天体验绘图体验 “是打算先免费后收费吗?”建议其它资料下载 前言 近期,人工智能技术迎来重大飞跃,OpenAI的ChatGPT等工具成为全球数亿人探索提高生产力和增强创造力的新方法。人们现在可以使用人工智能驱动…...

深入浅出 Compose Compiler(1) Kotlin Compiler KCP
前言 Compose 的语法简洁、代码效率非常高,这主要得益于 Compose Compiler 的一系列编译期魔法,帮开发者生成了很多样板代码。但编译期插桩也阻碍了我们对于 Compose 运行原理的认知,想要真正读懂 Compose 就必须先了解它的 Compiler。本系列…...

BatchNormalization和LayerNormalization的理解、适用范围、PyTorch代码示例
文章目录 为什么要NormalizationBatchNormLayerNormtorch代码示例 学习神经网络归一化时,文章形形色色,但没找到适合小白通俗易懂且全面的。学习过后,特此记录。 为什么要Normalization 当输入数据量级极大或极小时,为保证输出数…...

大数据 | 实验二:文档倒排索引算法实现
文章目录 📚实验目的📚实验平台📚实验内容🐇在本地编写程序和调试🥕代码框架思路🥕代码实现 🐇在集群上提交作业并执行🥕在集群上提交作业并执行,同本地执行相比即需修改…...
Java文档注释-JavaDoc标签
标签含义author指定作者{code}使用代码字体以原样显示信息,不处理HTML样式deprecated指定程序元素已经过时{docRoot}指定当前文档的根目录路径exception标识由方法或构造函数抛出的异常{inheritDoc}从直接超类中继承注释{link}插入指向另外一个主题的内联链接{linkp…...

黑盒测试过程中【测试方法】详解5-输入域,输出域,猜错法
在黑盒测试过程中,有9种常用的方法:1.等价类划分 2.边界值分析 3.判定表法 4.正交实验法 5.流程图分析 6.因果图法 7.输入域覆盖法 8.输出域覆盖法 9.猜错法 黑盒测试过程中【测试方法】讲解1-等价类,边界值,判定表_朝一…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...
Easy Excel
Easy Excel 一、依赖引入二、基本使用1. 定义实体类(导入/导出共用)2. 写 Excel3. 读 Excel 三、常用注解说明(完整列表)四、进阶:自定义转换器(Converter) 其它自定义转换器没生效 Easy Excel在…...

RKNN开发环境搭建2-RKNN Model Zoo 环境搭建
目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程. 本…...

简单聊下阿里云DNS劫持事件
阿里云域名被DNS劫持事件 事件总结 根据ICANN规则,域名注册商(Verisign)认定aliyuncs.com域名下的部分网站被用于非法活动(如传播恶意软件);顶级域名DNS服务器将aliyuncs.com域名的DNS记录统一解析到shado…...

汇编语言学习(三)——DoxBox中debug的使用
目录 一、安装DoxBox,并下载汇编工具(MASM文件) 二、debug是什么 三、debug中的命令 一、安装DoxBox,并下载汇编工具(MASM文件) 链接: https://pan.baidu.com/s/1IbyJj-JIkl_oMOJmkKiaGQ?pw…...

【芯片仿真中的X值:隐藏的陷阱与应对之道】
在芯片设计的世界里,X值(不定态)就像一个潜伏的幽灵。它可能让仿真测试顺利通过,却在芯片流片后引发灾难性后果。本文将揭开X值的本质,探讨其危害,并分享高效调试与预防的实战经验。 一、X值的本质与致…...