当前位置: 首页 > news >正文

阅读笔记 First Order Motion Model for Image Animation

文章解决的是图片动画的问题。假设有源图片和驱动视频,并且其中的物体是同一类的,文章的方法让源图片中的物体按照驱动视频中物体的动作而动。
文章的方法只需要一个同类物体的视频集,不需要而外的标注。

方法

该方法基于self-supervised策略,主要方法是基于训练视频中的一帧图像和和学习到的动作表示,重建出训练视频。其中,动作表示由动作特定的关键点(motion-specific keypoint)和局部仿射变换(local affine transformations)组成。
在这里插入图片描述
框架图如上图所示,由两个部分组成,一个是运动估计模块,一个是图像生成模块。
运动估计模块的目的是估计从驱动视频的一帧 D ∈ R 3 × H × W \mathbf D \in \mathbb R^{3\times H \times W} DR3×H×W到源图片 S ∈ R 3 × H × W \mathbf S \in \mathbb R^{3\times H \times W} SR3×H×W的稠密运动场(dense motion field)。运动场 T S ← D : R 2 → R 2 \mathcal T_{\mathbf S \leftarrow \mathbf D}: \mathbb R^2 \rightarrow \mathbb R^2 TSD:R2R2 D \mathbf D D中每个像素位置映射到对应的 S \mathbf S S T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD也被称为反向光流(backward optical flow)。使用反向光流而不是正向光流,因为可以使用双线性采样以可微分的方式有效地实现后向扭曲。

仿射变换

在齐次坐标上,仿射变换可以用下面的式子表示:
[ y ⃗ 1 ] = [ B b ⃗ 0 , … , 0 1 ] [ x ⃗ 1 ] {\begin{bmatrix}{\vec{y}}\\1\end{bmatrix}}= {\begin{bmatrix}B&{\vec {b}}\ \\0,\ldots ,0&1\end{bmatrix}} {\begin{bmatrix}{\vec {x}}\\1\end{bmatrix}} [y 1]=[B0,,0b  1][x 1]因为运算矩阵的最后一行是为了运算补齐的,所以在2维图像上仿射变换的参数由矩阵 A ∈ R 2 × 3 \mathbf A \in \mathbb R^{2 \times 3} AR2×3表示。

运动估计模块

粗运动估计

粗运动估计预测关键点处的运动模式。
动作估计模块估计反向光流 T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD用在关键点附近的一阶泰勒展开表示。

假设存在一个抽象参考帧 R \mathbf R R。这样,我们需要估计两个变换:从 R \mathbf R R S \mathbf S S T S ← R \mathcal T_{\mathbf S \leftarrow \mathbf R} TSR)和从 R \mathbf R R D \mathbf D D T D ← R \mathcal T_{\mathbf D \leftarrow \mathbf R} TDR)。抽象参考帧的好处是可以让我们独立的处理 D \mathbf D D S \mathbf S S
为了描述方便,用 X \mathbf X X表示 S \mathbf S S或者 D \mathbf D D,用 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK表示抽象参考帧 R \mathbf R R上的关键点的坐标,用 z z z表示在其他帧上的点的坐标。我们估计在关键点 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK周围的 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR。具体而言,我们考虑 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR在关键点 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK的一阶泰勒展开:
T X ← R ( p ) = T X ← R ( p k ) + ( d T X ← R ( p ) d p ∣ p = p k ) ( p − p k ) + o ( ∥ p − p k ∥ ) \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)=\mathcal T_{\mathbf X \leftarrow \mathbf R}(p_k)+(\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})(p-p_k)+o(\|p-p_k\|) TXR(p)=TXR(pk)+(dpdTXR(p)p=pk)(ppk)+o(ppk)这是可以看做一个仿射变换 A X ← R k ∈ R 2 × 3 \mathbf A^k_{\mathbf X \leftarrow \mathbf R} \in \mathbb R^{2 \times 3} AXRkR2×3 T X ← R ( p k ) \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_k) TXR(pk)是平移参数, d T X ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTXR(p)p=pk是线性映射的参数。

T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR用其在K个关键点处的值和Jacobian表示。
T X ← R ( p ) ≈ { { T X ← R ( p 1 ) , d T X ← R ( p ) d p ∣ p = p 1 } , ⋯ , { T X ← R ( p K ) , d T X ← R ( p ) d p ∣ p = p K } } \mathcal T_{\mathbf X \leftarrow \mathbf R}(p) \approx \{\{ \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_1),\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_1}\}, \cdots,\{ \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_K),\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_K}\}\} TXR(p){{TXR(p1),dpdTXR(p)p=p1},,{TXR(pK),dpdTXR(p)p=pK}}
我们假设 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR在每个关键点的局部是双射。则对于 T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD,我们有
T S ← D = T S ← R ∘ T D ← R − 1 \mathcal T_{\mathbf S \leftarrow \mathbf D}=\mathcal T_{\mathbf S \leftarrow \mathbf R} \circ \mathcal T^{-1}_{\mathbf D \leftarrow \mathbf R} TSD=TSRTDR1用一阶泰勒展开近似有
T S ← D ( z ) ≈ T S ← R ( p k ) + J k ( z − T D ← R ( p k ) ) J k = ( d T S ← R ( p ) d p ∣ p = p k ) ( d T D ← R ( p ) d p ∣ p = p k ) − 1 \mathcal T_{\mathbf S \leftarrow \mathbf D}(z) \approx \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) + J_k(z-\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k))\\ J_k=(\frac{d \mathcal T_{\mathbf S \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})(\frac{d \mathcal T_{\mathbf D \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})^{-1} TSD(z)TSR(pk)+Jk(zTDR(pk))Jk=(dpdTSR(p)p=pk)(dpdTDR(p)p=pk)1
T S ← R ( p k ) \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) TSR(pk) T D ← R ( p k ) \mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k) TDR(pk)用基于U-Net的关键点预测网络(keypoint predictor network)预测。对每个关键点预测一个heatmap,总共预测K个heatmap。U-Net的decoder最后一层用softmax预测关键点置信图(keypoint confidence map),也就是关键点在每个像素位置的置信度,满足 ∑ z ∈ Z W k ( z ) = 1 \sum_{z \in \mathcal Z} \mathbf W^k(z)=1 zZWk(z)=1,其中 Z \mathcal Z Z表示所有的像素位置。
T S ← R ( p k ) \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) TSR(pk) T D ← R ( p k ) \mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k) TDR(pk)相当于仿射变换中的平移参数,注意这里是两维的(z包含x和y)。平移参数用关键点置信图加权计算:
b k = ∑ z ∈ Z W k ( z ) z b^k = \sum_{z \in \mathcal Z} \mathbf W^k(z)z bk=zZWk(z)z
d T S ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf S \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTSR(p)p=pk d T D ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf D \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTDR(p)p=pk相当于仿射变换中的线性变换部分,他们作为仿射变换中剩下的4个参数用keypoint predictor network的额外的4个通道估计,每个关键点4个额外的通道。用 P i j k ∈ R H × W P^k_{ij} \in \mathbb R^{H \times W} PijkRH×W表示其中一个通道的估计值,其中 i , j i,j i,j是仿射变换的坐标。线性变换的参数用关键点置信图加权融合:
B k [ i , j ] = ∑ z ∈ Z W k ( z ) P i j k ( z ) \mathbf B^k[i,j] = \sum_{z \in \mathcal Z} \mathbf W^k(z)P^k_{ij}(z) Bk[i,j]=zZWk(z)Pijk(z)

密集运动估计

密集运动估计预测整个图像每个像素点的运动模式 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD

我们使用卷积网络从 K K K个关键点处的泰勒展开 T S ← D ( z ) \mathcal T_{\mathbf S \leftarrow \mathbf D}(z) TSD(z)和源图像帧 S \mathbf S S中估计 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD
用关键点处的变换扭曲源图像帧 S \mathbf S S,可以得到 K K K个变换后的图像 S 1 , ⋯ , S K \mathbf S^1, \cdots, \mathbf S^K S1,,SK。另外,考虑额外的图像 S 0 = S \mathbf S^0 = \mathbf S S0=S作为背景。
对每一个关键点计算heatmap H k ( z ) \mathbf H_k(z) Hk(z)表示每个变换在哪发生。
H k ( z ) = e x p ( ( T D ← R ( p k ) − z ) 2 σ ) − e x p ( ( T S ← R ( p k ) − z ) 2 σ ) \mathbf H_k(z) = exp(\frac{(\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k)-z)^2}{\sigma}) - exp(\frac{(\mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k)-z)^2}{\sigma}) Hk(z)=exp(σ(TDR(pk)z)2)exp(σ(TSR(pk)z)2)
H k \mathbf H_k Hk S 0 , ⋯ , S K \mathbf S^0, \cdots, \mathbf S^K S0,,SK拼接输入基于U-Net的稠密运动网络(dense motion network)。dense motion network估计 K + 1 K+1 K+1个掩码 M k , k = 0 , ⋯ , K \mathbf M_k, k = 0, \cdots, K Mk,k=0,,K 表示每个位置用哪个局部变换,满足 ∑ k = 0 K M k ( z ) = 1 \sum_{k=0}^K \mathbf M^k(z)=1 k=0KMk(z)=1。最后的密集运动场表示为:
T ^ S ← D ( z ) = M 0 z + ∑ k = 1 K M k ( T S ← R ( p k ) + J k ( z − T D ← R ( p k ) ) ) \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D}(z) = \mathbf M_0z + \sum_{k=1}^K \mathbf M_k(\mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) + J_k(z-\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k))) T^SD(z)=M0z+k=1KMk(TSR(pk)+Jk(zTDR(pk)))
表示为矩阵坐标变换有:
O ( z ) = M 0 ( z ) z + ∑ k = 1 K M k ( z ) A S ← D k [ z 1 ] \mathbf O(z) = \mathbf M^0(z)z + \sum_{k=1}^K \mathbf M^k(z) \mathbf A^k_{\mathbf S \leftarrow \mathbf D} {\begin{bmatrix}{z}\\1\end{bmatrix}} O(z)=M0(z)z+k=1KMk(z)ASDk[z1]

图像生成模块

1.根据上面预测的 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD S S S经过两个下采样卷积的特征图(feature map ) ξ ∈ R H ′ × W ′ \xi \in \mathbb R^{H'\times W'} ξRH×W使用warp操作。
2.在 S S S中存在遮挡的时候, D ′ D' D并不能完全通过warp源图像获得,而是需要inpaint。所以,预测一个遮挡图(occlusion map) O ^ S ← D ∈ [ 0 , 1 ] H ′ × W ′ \hat{\mathcal O}_{\mathbf S \leftarrow \mathbf D} \in [0,1]^{H'\times W'} O^SD[0,1]H×W,表示源图像需要被inpaint的区域。occlusion map通过在dense motion network后添加一层来预测。
经过转换的feature map可以表示为:
ξ ′ = O ^ S ← D ⊙ f w ( ξ , T ^ S ← D ) \xi' = \hat{\mathcal O}_{\mathbf S \leftarrow \mathbf D} \odot f_w(\xi, \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D}) ξ=O^SDfw(ξ,T^SD) f w f_w fw表示反向变形(back-warping)操作。经过转换的feature map输入到图像生成模块的后面层处理,最后生成图像。

训练

训练的损失由多项组成。首先是基于perceptual loss的reconstruction loss。该loss用预训练的VGG-19网络作为特征提取器,对比重建帧和驱动视频的真实帧的特征差异。

另外考虑到关键点的学习是无标签的,这会导致不稳定的表现,引入Equivariance constraint用在无监督关键点的学习中。假设图片 X X X经过过一个已知的变换 T X ← Y \mathcal T_{\mathbf X \leftarrow \mathbf Y} TXY,得到 Y Y Y。Equivariance constraint要求:
T X ← R ≡ T X ← Y ∘ T Y ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} \equiv \mathcal T_{\mathbf X \leftarrow \mathbf Y} \circ \mathcal T_{\mathbf Y \leftarrow \mathbf R} TXRTXYTYR通过对两边进行一阶泰勒展开有,并使用L1 loss分别约束关键点处的值和Jacobian。

参考资料

《First Order Motion Model for Image Animation》
《Motion Representations for Articulated Animation》

相关文章:

阅读笔记 First Order Motion Model for Image Animation

文章解决的是图片动画的问题。假设有源图片和驱动视频,并且其中的物体是同一类的,文章的方法让源图片中的物体按照驱动视频中物体的动作而动。 文章的方法只需要一个同类物体的视频集,不需要而外的标注。 方法 该方法基于self-supervised策…...

【计算机图形学】课堂习题汇总

在直线的光栅化算法中,如果不考虑最大位移方向则可能得到怎样的直线? A:斜率为1的线 B:总是垂直的 C:离散的点,无法构成直线 D:总是水平的 在直线的改进的Bresenham算法中,每当误…...

国外导师对博士后申请简历的几点建议

正所谓“工欲善其事,必先利其器”,想要申请国外的博士后职位,就要准备好相应的申请文书材料。如果说Cover Letter是职位的窍门砖,那么申请者的简历就是争取职位的决定性筹码。 相信大家已经看过许多简历的模版了,但是…...

【五一创作】Scratch资料袋

Scratch软件是免费的、免费的、免费的。任何需要花钱才能下载Scratch软件的全是骗子。 1、什么是Scratch Scratch是麻省理工学院的“终身幼儿园团队”开发的一种图形化编程工具。是面向青少年的一款模块化,积木化、可视化的编程语言。 什么是模块化、积木化&…...

数据库基础篇 《17.触发器》

数据库基础篇 《17.触发器》 在实际开发中,我们经常会遇到这样的情况:有 2 个或者多个相互关联的表,如商品信息和库存信息分别存放在 2 个不同的数据表中,我们在添加一条新商品记录的时候,为了保证数据的完整性&#…...

03 - 大学生如何使用GPT

大学生如何使用GPT提高学习效率 一、引言 在当今的高速发展的信息时代,大学生面临着越来越多的学习挑战。作为一种先进的人工智能技术,GPT为大学生提供了一种强大的学习工具。本文将介绍大学生在不同场景中如何使用GPT来提高学习效率,并给出…...

【P1】Jmeter 准备工作

文章目录 一、Jmeter 介绍1.1、Jmeter 有什么样功能1.2、Jmeter 与 LoadRunner 比较1.3、常用性能测试工具1.4、性能测试工具如何选型1.5、学习 Jmeter 对 Java 编程的要求 二、Jmeter 软件安装2.1、官网介绍2.2、JDK 安装及环境配置2.3、Jmeter 三种模式2.4、主要配置介绍2.4.…...

字节的面试,你能扛住几道?

C , Python 哪一个更快? 读者答:这个我不知道从哪方面说,就是 C 的话,它其实能够提供开发者非常多的权限,就是说它能涉及到一些操作系统级别的一些操作,速度应该挺快。然后 Python 实现功能还…...

NOPI用法之自定义单元格背景色(3)

NPOI针对office2003使用HSSFWorkbook,对于offce2007及以上使用XSSFWorkbook;今天我以HSSFWorkbook自定义颜色为例说明,Office2007的未研究呢 在NPOI中默认的颜色类是HSSFColor,它内置的颜色有几十种供我们选择,如果不…...

数据分析中常见标准的参考文献

做数据分析过程中,有些分析法方法的标准随便一搜就能找到,不管是口口相传还是默认,大家都按那样的标准做了。日常分析不细究出处还可以,但是正式的学术论文你需要为你写下的每一句话负责,每一个判断标准都应该有参考文…...

辨析 变更请求、批准的变更请求、实施批准的变更请求

变更请求、批准的变更请求、实施批准的变更请求辨析 辨析各种变更请求,不服来辨。 变更请求 定义:对正规受控的文件或计划(范围、进度、成本、政策、过程、计划或程序)等的变更,以反映修改或增加的意见或内容 根据变更请求的工作内容可将变…...

leetcode 561. 数组拆分

题目描述解题思路执行结果 leetcode 561. 数组拆分 题目描述 数组拆分 给定长度为 2n 的整数数组 nums ,你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), ..., (an, bn) ,使得从 1 到 n 的 min(ai, bi) 总和最大。 返回该 最大总和 。 示例 1&am…...

AviatorScript

AviatorScript 是一门高性能、轻量级寄宿于 JVM (包括 Android 平台)之上的脚本语言 特性介绍 支持数字、字符串、正则表达式、布尔值、正则表达式等基本类型,完整支持所有 Java 运算符及优先级等。函数是一等公民,支持闭包和函…...

Oracle跨服务器取数——DBlink 初级使用

前言 一句话解释DBlink是干啥用的 实现跨库访问的可能性. 通过DBlink我们可以在A数据库访问到B数据库中的所有信息,例如我们在加工FDS层表时需要访问ODS层的表,这是就需要跨库访问 一、DBlink的分类 private:用户级别,只有创建该dblink的用户才可以使…...

200人 500人 园区网设计

实验要求: ① 设置合理的STP优先级、边缘端口、Eth-trunk ② 企业内网划分多个vlan ,减少广播域大小,提高网络稳定性 ③ 所有设备,在任何位置都可以telnet远程管理 ④ 出口配置NAT ⑤ 所有用户均为自动获取ip地址 ⑥ 在企业…...

netstat命令解析

一、linux系统中netstat命令的帮助信息 └──╼ $netstat -h usage: netstat [-vWeenNcCF] [<Af>] -r netstat {-V|--version|-h|--help}netstat [-vWnNcaeol] [<Socket> ...]netstat { [-vWeenNac] -i | [-cnNe] -M | -s [-6tuw] }-r, --route …...

API接口的自我阐述

API&#xff08;Application Programming Interface&#xff09;&#xff0c;翻译为应用程序接口&#xff0c;是一套定义程序之间如何通讯的接口。API可以实现软件的可重用性、可维护性和互操作性&#xff0c;同时也可以提升软件的性能和安全性。API接口是一个软件系统中的重要…...

Day32内部类

内部类 内部类就是在一个类中定义一个类&#xff0c;&#xff08;在A类中定义一个B类&#xff0c;B类就被称为内部类&#xff09; 格式&#xff1a;public class 类名{ 修饰符 class 类名{} } 如&#xff1a;public class Outer{ public class Inner {} } //内部类可以访问外部…...

用户画像系列——HBase 在画像标签过期策略中的应用

一、背景 前面系列文章介绍了用户画像的概念、用户画像的标签加工、用户画像的应用。本篇文章主要介绍一些画像的技术细节&#xff0c;让大家更加详细的了解画像数据存储和处理的逻辑 举个现实中的例子&#xff1a; 例子1&#xff1a;因为疫情原因&#xff0c;上线一个平台(…...

时下热门话题:ChatGPT能否取代人类?

时下热门话题&#xff1a;ChatGPT能否取代人类&#xff1f; 2022年11月底&#xff0c;人工智能对话聊天机器人ChatGPT推出&#xff0c;迅速在社交媒体上走红&#xff0c;短短5天&#xff0c;注册用户数就超过100万。2023年1月末&#xff0c;ChatGPT的月活用户已突破1亿&#x…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

倒装芯片凸点成型工艺

UBM&#xff08;Under Bump Metallization&#xff09;与Bump&#xff08;焊球&#xff09;形成工艺流程。我们可以将整张流程图分为三大阶段来理解&#xff1a; &#x1f527; 一、UBM&#xff08;Under Bump Metallization&#xff09;工艺流程&#xff08;黄色区域&#xff…...