当前位置: 首页 > news >正文

阅读笔记 First Order Motion Model for Image Animation

文章解决的是图片动画的问题。假设有源图片和驱动视频,并且其中的物体是同一类的,文章的方法让源图片中的物体按照驱动视频中物体的动作而动。
文章的方法只需要一个同类物体的视频集,不需要而外的标注。

方法

该方法基于self-supervised策略,主要方法是基于训练视频中的一帧图像和和学习到的动作表示,重建出训练视频。其中,动作表示由动作特定的关键点(motion-specific keypoint)和局部仿射变换(local affine transformations)组成。
在这里插入图片描述
框架图如上图所示,由两个部分组成,一个是运动估计模块,一个是图像生成模块。
运动估计模块的目的是估计从驱动视频的一帧 D ∈ R 3 × H × W \mathbf D \in \mathbb R^{3\times H \times W} DR3×H×W到源图片 S ∈ R 3 × H × W \mathbf S \in \mathbb R^{3\times H \times W} SR3×H×W的稠密运动场(dense motion field)。运动场 T S ← D : R 2 → R 2 \mathcal T_{\mathbf S \leftarrow \mathbf D}: \mathbb R^2 \rightarrow \mathbb R^2 TSD:R2R2 D \mathbf D D中每个像素位置映射到对应的 S \mathbf S S T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD也被称为反向光流(backward optical flow)。使用反向光流而不是正向光流,因为可以使用双线性采样以可微分的方式有效地实现后向扭曲。

仿射变换

在齐次坐标上,仿射变换可以用下面的式子表示:
[ y ⃗ 1 ] = [ B b ⃗ 0 , … , 0 1 ] [ x ⃗ 1 ] {\begin{bmatrix}{\vec{y}}\\1\end{bmatrix}}= {\begin{bmatrix}B&{\vec {b}}\ \\0,\ldots ,0&1\end{bmatrix}} {\begin{bmatrix}{\vec {x}}\\1\end{bmatrix}} [y 1]=[B0,,0b  1][x 1]因为运算矩阵的最后一行是为了运算补齐的,所以在2维图像上仿射变换的参数由矩阵 A ∈ R 2 × 3 \mathbf A \in \mathbb R^{2 \times 3} AR2×3表示。

运动估计模块

粗运动估计

粗运动估计预测关键点处的运动模式。
动作估计模块估计反向光流 T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD用在关键点附近的一阶泰勒展开表示。

假设存在一个抽象参考帧 R \mathbf R R。这样,我们需要估计两个变换:从 R \mathbf R R S \mathbf S S T S ← R \mathcal T_{\mathbf S \leftarrow \mathbf R} TSR)和从 R \mathbf R R D \mathbf D D T D ← R \mathcal T_{\mathbf D \leftarrow \mathbf R} TDR)。抽象参考帧的好处是可以让我们独立的处理 D \mathbf D D S \mathbf S S
为了描述方便,用 X \mathbf X X表示 S \mathbf S S或者 D \mathbf D D,用 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK表示抽象参考帧 R \mathbf R R上的关键点的坐标,用 z z z表示在其他帧上的点的坐标。我们估计在关键点 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK周围的 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR。具体而言,我们考虑 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR在关键点 p 1 , ⋯ , p K p_1,\cdots,p_K p1,,pK的一阶泰勒展开:
T X ← R ( p ) = T X ← R ( p k ) + ( d T X ← R ( p ) d p ∣ p = p k ) ( p − p k ) + o ( ∥ p − p k ∥ ) \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)=\mathcal T_{\mathbf X \leftarrow \mathbf R}(p_k)+(\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})(p-p_k)+o(\|p-p_k\|) TXR(p)=TXR(pk)+(dpdTXR(p)p=pk)(ppk)+o(ppk)这是可以看做一个仿射变换 A X ← R k ∈ R 2 × 3 \mathbf A^k_{\mathbf X \leftarrow \mathbf R} \in \mathbb R^{2 \times 3} AXRkR2×3 T X ← R ( p k ) \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_k) TXR(pk)是平移参数, d T X ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTXR(p)p=pk是线性映射的参数。

T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR用其在K个关键点处的值和Jacobian表示。
T X ← R ( p ) ≈ { { T X ← R ( p 1 ) , d T X ← R ( p ) d p ∣ p = p 1 } , ⋯ , { T X ← R ( p K ) , d T X ← R ( p ) d p ∣ p = p K } } \mathcal T_{\mathbf X \leftarrow \mathbf R}(p) \approx \{\{ \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_1),\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_1}\}, \cdots,\{ \mathcal T_{\mathbf X \leftarrow \mathbf R}(p_K),\frac{d \mathcal T_{\mathbf X \leftarrow \mathbf R}(p)}{dp}|_{p=p_K}\}\} TXR(p){{TXR(p1),dpdTXR(p)p=p1},,{TXR(pK),dpdTXR(p)p=pK}}
我们假设 T X ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} TXR在每个关键点的局部是双射。则对于 T S ← D \mathcal T_{\mathbf S \leftarrow \mathbf D} TSD,我们有
T S ← D = T S ← R ∘ T D ← R − 1 \mathcal T_{\mathbf S \leftarrow \mathbf D}=\mathcal T_{\mathbf S \leftarrow \mathbf R} \circ \mathcal T^{-1}_{\mathbf D \leftarrow \mathbf R} TSD=TSRTDR1用一阶泰勒展开近似有
T S ← D ( z ) ≈ T S ← R ( p k ) + J k ( z − T D ← R ( p k ) ) J k = ( d T S ← R ( p ) d p ∣ p = p k ) ( d T D ← R ( p ) d p ∣ p = p k ) − 1 \mathcal T_{\mathbf S \leftarrow \mathbf D}(z) \approx \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) + J_k(z-\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k))\\ J_k=(\frac{d \mathcal T_{\mathbf S \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})(\frac{d \mathcal T_{\mathbf D \leftarrow \mathbf R}(p)}{dp}|_{p=p_k})^{-1} TSD(z)TSR(pk)+Jk(zTDR(pk))Jk=(dpdTSR(p)p=pk)(dpdTDR(p)p=pk)1
T S ← R ( p k ) \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) TSR(pk) T D ← R ( p k ) \mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k) TDR(pk)用基于U-Net的关键点预测网络(keypoint predictor network)预测。对每个关键点预测一个heatmap,总共预测K个heatmap。U-Net的decoder最后一层用softmax预测关键点置信图(keypoint confidence map),也就是关键点在每个像素位置的置信度,满足 ∑ z ∈ Z W k ( z ) = 1 \sum_{z \in \mathcal Z} \mathbf W^k(z)=1 zZWk(z)=1,其中 Z \mathcal Z Z表示所有的像素位置。
T S ← R ( p k ) \mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) TSR(pk) T D ← R ( p k ) \mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k) TDR(pk)相当于仿射变换中的平移参数,注意这里是两维的(z包含x和y)。平移参数用关键点置信图加权计算:
b k = ∑ z ∈ Z W k ( z ) z b^k = \sum_{z \in \mathcal Z} \mathbf W^k(z)z bk=zZWk(z)z
d T S ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf S \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTSR(p)p=pk d T D ← R ( p ) d p ∣ p = p k \frac{d \mathcal T_{\mathbf D \leftarrow \mathbf R}(p)}{dp}|_{p=p_k} dpdTDR(p)p=pk相当于仿射变换中的线性变换部分,他们作为仿射变换中剩下的4个参数用keypoint predictor network的额外的4个通道估计,每个关键点4个额外的通道。用 P i j k ∈ R H × W P^k_{ij} \in \mathbb R^{H \times W} PijkRH×W表示其中一个通道的估计值,其中 i , j i,j i,j是仿射变换的坐标。线性变换的参数用关键点置信图加权融合:
B k [ i , j ] = ∑ z ∈ Z W k ( z ) P i j k ( z ) \mathbf B^k[i,j] = \sum_{z \in \mathcal Z} \mathbf W^k(z)P^k_{ij}(z) Bk[i,j]=zZWk(z)Pijk(z)

密集运动估计

密集运动估计预测整个图像每个像素点的运动模式 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD

我们使用卷积网络从 K K K个关键点处的泰勒展开 T S ← D ( z ) \mathcal T_{\mathbf S \leftarrow \mathbf D}(z) TSD(z)和源图像帧 S \mathbf S S中估计 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD
用关键点处的变换扭曲源图像帧 S \mathbf S S,可以得到 K K K个变换后的图像 S 1 , ⋯ , S K \mathbf S^1, \cdots, \mathbf S^K S1,,SK。另外,考虑额外的图像 S 0 = S \mathbf S^0 = \mathbf S S0=S作为背景。
对每一个关键点计算heatmap H k ( z ) \mathbf H_k(z) Hk(z)表示每个变换在哪发生。
H k ( z ) = e x p ( ( T D ← R ( p k ) − z ) 2 σ ) − e x p ( ( T S ← R ( p k ) − z ) 2 σ ) \mathbf H_k(z) = exp(\frac{(\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k)-z)^2}{\sigma}) - exp(\frac{(\mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k)-z)^2}{\sigma}) Hk(z)=exp(σ(TDR(pk)z)2)exp(σ(TSR(pk)z)2)
H k \mathbf H_k Hk S 0 , ⋯ , S K \mathbf S^0, \cdots, \mathbf S^K S0,,SK拼接输入基于U-Net的稠密运动网络(dense motion network)。dense motion network估计 K + 1 K+1 K+1个掩码 M k , k = 0 , ⋯ , K \mathbf M_k, k = 0, \cdots, K Mk,k=0,,K 表示每个位置用哪个局部变换,满足 ∑ k = 0 K M k ( z ) = 1 \sum_{k=0}^K \mathbf M^k(z)=1 k=0KMk(z)=1。最后的密集运动场表示为:
T ^ S ← D ( z ) = M 0 z + ∑ k = 1 K M k ( T S ← R ( p k ) + J k ( z − T D ← R ( p k ) ) ) \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D}(z) = \mathbf M_0z + \sum_{k=1}^K \mathbf M_k(\mathcal T_{\mathbf S \leftarrow \mathbf R}(p_k) + J_k(z-\mathcal T_{\mathbf D \leftarrow \mathbf R}(p_k))) T^SD(z)=M0z+k=1KMk(TSR(pk)+Jk(zTDR(pk)))
表示为矩阵坐标变换有:
O ( z ) = M 0 ( z ) z + ∑ k = 1 K M k ( z ) A S ← D k [ z 1 ] \mathbf O(z) = \mathbf M^0(z)z + \sum_{k=1}^K \mathbf M^k(z) \mathbf A^k_{\mathbf S \leftarrow \mathbf D} {\begin{bmatrix}{z}\\1\end{bmatrix}} O(z)=M0(z)z+k=1KMk(z)ASDk[z1]

图像生成模块

1.根据上面预测的 T ^ S ← D \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D} T^SD S S S经过两个下采样卷积的特征图(feature map ) ξ ∈ R H ′ × W ′ \xi \in \mathbb R^{H'\times W'} ξRH×W使用warp操作。
2.在 S S S中存在遮挡的时候, D ′ D' D并不能完全通过warp源图像获得,而是需要inpaint。所以,预测一个遮挡图(occlusion map) O ^ S ← D ∈ [ 0 , 1 ] H ′ × W ′ \hat{\mathcal O}_{\mathbf S \leftarrow \mathbf D} \in [0,1]^{H'\times W'} O^SD[0,1]H×W,表示源图像需要被inpaint的区域。occlusion map通过在dense motion network后添加一层来预测。
经过转换的feature map可以表示为:
ξ ′ = O ^ S ← D ⊙ f w ( ξ , T ^ S ← D ) \xi' = \hat{\mathcal O}_{\mathbf S \leftarrow \mathbf D} \odot f_w(\xi, \hat{\mathcal T}_{\mathbf S \leftarrow \mathbf D}) ξ=O^SDfw(ξ,T^SD) f w f_w fw表示反向变形(back-warping)操作。经过转换的feature map输入到图像生成模块的后面层处理,最后生成图像。

训练

训练的损失由多项组成。首先是基于perceptual loss的reconstruction loss。该loss用预训练的VGG-19网络作为特征提取器,对比重建帧和驱动视频的真实帧的特征差异。

另外考虑到关键点的学习是无标签的,这会导致不稳定的表现,引入Equivariance constraint用在无监督关键点的学习中。假设图片 X X X经过过一个已知的变换 T X ← Y \mathcal T_{\mathbf X \leftarrow \mathbf Y} TXY,得到 Y Y Y。Equivariance constraint要求:
T X ← R ≡ T X ← Y ∘ T Y ← R \mathcal T_{\mathbf X \leftarrow \mathbf R} \equiv \mathcal T_{\mathbf X \leftarrow \mathbf Y} \circ \mathcal T_{\mathbf Y \leftarrow \mathbf R} TXRTXYTYR通过对两边进行一阶泰勒展开有,并使用L1 loss分别约束关键点处的值和Jacobian。

参考资料

《First Order Motion Model for Image Animation》
《Motion Representations for Articulated Animation》

相关文章:

阅读笔记 First Order Motion Model for Image Animation

文章解决的是图片动画的问题。假设有源图片和驱动视频,并且其中的物体是同一类的,文章的方法让源图片中的物体按照驱动视频中物体的动作而动。 文章的方法只需要一个同类物体的视频集,不需要而外的标注。 方法 该方法基于self-supervised策…...

【计算机图形学】课堂习题汇总

在直线的光栅化算法中,如果不考虑最大位移方向则可能得到怎样的直线? A:斜率为1的线 B:总是垂直的 C:离散的点,无法构成直线 D:总是水平的 在直线的改进的Bresenham算法中,每当误…...

国外导师对博士后申请简历的几点建议

正所谓“工欲善其事,必先利其器”,想要申请国外的博士后职位,就要准备好相应的申请文书材料。如果说Cover Letter是职位的窍门砖,那么申请者的简历就是争取职位的决定性筹码。 相信大家已经看过许多简历的模版了,但是…...

【五一创作】Scratch资料袋

Scratch软件是免费的、免费的、免费的。任何需要花钱才能下载Scratch软件的全是骗子。 1、什么是Scratch Scratch是麻省理工学院的“终身幼儿园团队”开发的一种图形化编程工具。是面向青少年的一款模块化,积木化、可视化的编程语言。 什么是模块化、积木化&…...

数据库基础篇 《17.触发器》

数据库基础篇 《17.触发器》 在实际开发中,我们经常会遇到这样的情况:有 2 个或者多个相互关联的表,如商品信息和库存信息分别存放在 2 个不同的数据表中,我们在添加一条新商品记录的时候,为了保证数据的完整性&#…...

03 - 大学生如何使用GPT

大学生如何使用GPT提高学习效率 一、引言 在当今的高速发展的信息时代,大学生面临着越来越多的学习挑战。作为一种先进的人工智能技术,GPT为大学生提供了一种强大的学习工具。本文将介绍大学生在不同场景中如何使用GPT来提高学习效率,并给出…...

【P1】Jmeter 准备工作

文章目录 一、Jmeter 介绍1.1、Jmeter 有什么样功能1.2、Jmeter 与 LoadRunner 比较1.3、常用性能测试工具1.4、性能测试工具如何选型1.5、学习 Jmeter 对 Java 编程的要求 二、Jmeter 软件安装2.1、官网介绍2.2、JDK 安装及环境配置2.3、Jmeter 三种模式2.4、主要配置介绍2.4.…...

字节的面试,你能扛住几道?

C , Python 哪一个更快? 读者答:这个我不知道从哪方面说,就是 C 的话,它其实能够提供开发者非常多的权限,就是说它能涉及到一些操作系统级别的一些操作,速度应该挺快。然后 Python 实现功能还…...

NOPI用法之自定义单元格背景色(3)

NPOI针对office2003使用HSSFWorkbook,对于offce2007及以上使用XSSFWorkbook;今天我以HSSFWorkbook自定义颜色为例说明,Office2007的未研究呢 在NPOI中默认的颜色类是HSSFColor,它内置的颜色有几十种供我们选择,如果不…...

数据分析中常见标准的参考文献

做数据分析过程中,有些分析法方法的标准随便一搜就能找到,不管是口口相传还是默认,大家都按那样的标准做了。日常分析不细究出处还可以,但是正式的学术论文你需要为你写下的每一句话负责,每一个判断标准都应该有参考文…...

辨析 变更请求、批准的变更请求、实施批准的变更请求

变更请求、批准的变更请求、实施批准的变更请求辨析 辨析各种变更请求,不服来辨。 变更请求 定义:对正规受控的文件或计划(范围、进度、成本、政策、过程、计划或程序)等的变更,以反映修改或增加的意见或内容 根据变更请求的工作内容可将变…...

leetcode 561. 数组拆分

题目描述解题思路执行结果 leetcode 561. 数组拆分 题目描述 数组拆分 给定长度为 2n 的整数数组 nums ,你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), ..., (an, bn) ,使得从 1 到 n 的 min(ai, bi) 总和最大。 返回该 最大总和 。 示例 1&am…...

AviatorScript

AviatorScript 是一门高性能、轻量级寄宿于 JVM (包括 Android 平台)之上的脚本语言 特性介绍 支持数字、字符串、正则表达式、布尔值、正则表达式等基本类型,完整支持所有 Java 运算符及优先级等。函数是一等公民,支持闭包和函…...

Oracle跨服务器取数——DBlink 初级使用

前言 一句话解释DBlink是干啥用的 实现跨库访问的可能性. 通过DBlink我们可以在A数据库访问到B数据库中的所有信息,例如我们在加工FDS层表时需要访问ODS层的表,这是就需要跨库访问 一、DBlink的分类 private:用户级别,只有创建该dblink的用户才可以使…...

200人 500人 园区网设计

实验要求: ① 设置合理的STP优先级、边缘端口、Eth-trunk ② 企业内网划分多个vlan ,减少广播域大小,提高网络稳定性 ③ 所有设备,在任何位置都可以telnet远程管理 ④ 出口配置NAT ⑤ 所有用户均为自动获取ip地址 ⑥ 在企业…...

netstat命令解析

一、linux系统中netstat命令的帮助信息 └──╼ $netstat -h usage: netstat [-vWeenNcCF] [<Af>] -r netstat {-V|--version|-h|--help}netstat [-vWnNcaeol] [<Socket> ...]netstat { [-vWeenNac] -i | [-cnNe] -M | -s [-6tuw] }-r, --route …...

API接口的自我阐述

API&#xff08;Application Programming Interface&#xff09;&#xff0c;翻译为应用程序接口&#xff0c;是一套定义程序之间如何通讯的接口。API可以实现软件的可重用性、可维护性和互操作性&#xff0c;同时也可以提升软件的性能和安全性。API接口是一个软件系统中的重要…...

Day32内部类

内部类 内部类就是在一个类中定义一个类&#xff0c;&#xff08;在A类中定义一个B类&#xff0c;B类就被称为内部类&#xff09; 格式&#xff1a;public class 类名{ 修饰符 class 类名{} } 如&#xff1a;public class Outer{ public class Inner {} } //内部类可以访问外部…...

用户画像系列——HBase 在画像标签过期策略中的应用

一、背景 前面系列文章介绍了用户画像的概念、用户画像的标签加工、用户画像的应用。本篇文章主要介绍一些画像的技术细节&#xff0c;让大家更加详细的了解画像数据存储和处理的逻辑 举个现实中的例子&#xff1a; 例子1&#xff1a;因为疫情原因&#xff0c;上线一个平台(…...

时下热门话题:ChatGPT能否取代人类?

时下热门话题&#xff1a;ChatGPT能否取代人类&#xff1f; 2022年11月底&#xff0c;人工智能对话聊天机器人ChatGPT推出&#xff0c;迅速在社交媒体上走红&#xff0c;短短5天&#xff0c;注册用户数就超过100万。2023年1月末&#xff0c;ChatGPT的月活用户已突破1亿&#x…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...