XXL-JOB中间件【实现分布式任务调度】
目录
1:XXL-JOB介绍
2:搭建XXL-JOB
2.1:调度中心
2.2:执行器
2.3:执行任务
3:分片广播
1:XXL-JOB介绍
XXL-JOB是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
官网:https://www.xuxueli.com/xxl-job/
文档:https://www.xuxueli.com/xxl-job
XXL-JOB主要有调度中心、执行器、任务:
调度中心:
负责管理调度信息,按照调度配置发出调度请求,自身不承担业务代码;
主要职责为执行器管理、任务管理、监控运维、日志管理等
任务执行器:
负责接收调度请求并执行任务逻辑;
只要职责是注册服务、任务执行服务(接收到任务后会放入线程池中的任务队列)、执行结果上报、日志服务等
任务:负责执行具体的业务处理。
调度中心与执行器之间的工作流程如下:
执行流程:
1.任务执行器根据配置的调度中心的地址,自动注册到调度中心
2.达到任务触发条件,调度中心下发任务
3.执行器基于线程池执行任务,并把执行结果放入内存队列中、把执行日志写入日志文件中
4.执行器消费内存队列中的执行结果,主动上报给调度中心
5.当用户在调度中心查看任务日志,调度中心请求任务执行器,任务执行器读取任务日志文件并返回日志详情
2:搭建XXL-JOB
2.1:调度中心
首先下载XXL-JOB
GitHub:GitHub - xuxueli/xxl-job: A distributed task scheduling framework.(分布式任务调度平台XXL-JOB)
码云:xxl-job: 一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
项目使用2.3.1版本: https://github.com/xuxueli/xxl-job/releases/tag/2.3.1
也可从课程资料目录获取,解压xxl-job-2.3.1.zip
使用IDEA打开解压后的目录
xxl-job-admin:调度中心
xxl-job-core:公共依赖
xxl-job-executor-samples:执行器Sample示例(选择合适的版本执行器,可直接使用)
:xxl-job-executor-sample-springboot:Springboot版本,通过Springboot管理执行器,推荐这种方式;
:xxl-job-executor-sample-frameless:无框架版本;
doc :文档资料,包含数据库脚本
在下发的虚拟机的MySQL中已经创建了xxl_job_2.3.1数据库
如下图:
账号和密码:admin/123456
如果无法使用虚拟机运行xxl-job可以在本机idea运行xxl-job调度中心。
2.2:执行器
下边配置执行器,执行器负责与调度中心通信接收调度中心发起的任务调度请求。
1、下边进入调度中心添加执行器
点击新增,填写执行器信息,appname是前边在nacos中配置xxl信息时指定的执行器的应用名。
添加成功:2: 在你项目中需要使用任务调度的模块中添加相关依赖
<dependency><groupId>com.xuxueli</groupId><artifactId>xxl-job-core</artifactId>
</dependency>
3: 在yaml配置文件中添加相关配置
xxl:job:admin: addresses: http://192.168.101.65:8088/xxl-job-adminexecutor:appname: media-process-serviceaddress: ip: port: 9999logpath: /data/applogs/xxl-job/jobhandlerlogretentiondays: 30accessToken: default_token
注意配置中的appname这是执行器的应用名,port是执行器启动的端口,如果本地启动多个执行器注意端口不能重复。
4、配置xxl-job的执行器
将xxl-job示例工程下配置类拷贝到媒资管理的service工程下
拷贝至:自己项目需要用到任务调度的模块
到此完成媒资管理模块service工程配置xxl-job执行器,在xxl-job调度中心添加执行器,下边准备测试执行器与调度中心是否正常通信,因为接口工程依赖了service工程,所以启动媒资管理模块的接口工程。
启动后观察日志,出现下边的日志表示执行器在调度中心注册成功
同时观察调度中心中的执行器界面
在线机器地址处已显示1个执行器。
2.3:执行任务
下边编写任务,参考示例工程中任务类的编写方法,如下图:
下边在调度中心添加任务,进入任务管理
点击新增,填写任务信息
注意红色标记处:
调度类型:
固定速度指按固定的间隔定时调度。
Cron,通过Cron表达式实现更丰富的定时调度策略。
Cron表达式是一个字符串,通过它可以定义调度策略,格式如下:
{秒数} {分钟} {小时} {日期} {月份} {星期} {年份(可为空)}
xxl-job提供图形界面去配置:
一些例子如下:
30 10 1 * * ? 每天1点10分30秒触发
0/30 * * * * ? 每30秒触发一次
* 0/10 * * * ? 每10分钟触发一次
运行模式有BEAN和GLUE,bean模式较常用就是在项目工程中编写执行器的任务代码,GLUE是将任务代码编写在调度中心。
JobHandler即任务方法名,填写任务方法上边@XxlJob注解中的名称。
路由策略:当执行器集群部署时,调度中心向哪个执行器下发任务,这里选择第一个表示只向第一个执行器下发任务,路由策略的其它选项稍后在分片广播章节详细解释。
高级配置的其它配置项稍后在分片广播章节详细解释。
添加成功,启动任务
通过调度日志查看任务执行情况
下边启动媒资管理的service工程,启动执行器。
观察执行器方法的执行。
如果要停止任务需要在调度中心操作
任务跑一段时间注意清理日志
3:分片广播
掌握了xxl-job的基本使用,下边思考如何进行分布式任务处理呢?如下图,我们会启动多个执行器组成一个集群,去执行任务。
执行器在集群部署下调度中心有哪些路由策略呢?
查看xxl-job官方文档,阅读高级配置相关的内容:
高级配置:
- 路由策略:当执行器集群部署时,提供丰富的路由策略,包括;
FIRST(第一个):固定选择第一个机器;
LAST(最后一个):固定选择最后一个机器;
ROUND(轮询):;
RANDOM(随机):随机选择在线的机器;
CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;
FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;
- 子任务:每个任务都拥有一个唯一的任务ID(任务ID可以从任务列表获取),当本任务执行结束并且执行成功时,将会触发子任务ID所对应的任务的一次主动调度,通过子任务可以实现一个任务执行完成去执行另一个任务。
- 调度过期策略:
- 忽略:调度过期后,忽略过期的任务,从当前时间开始重新计算下次触发时间;
- 立即执行一次:调度过期后,立即执行一次,并从当前时间开始重新计算下次触发时间;
- 阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;
单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO队列并以串行方式运行;
丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;
覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;
- 任务超时时间:支持自定义任务超时时间,任务运行超时将会主动中断任务;
- 失败重试次数;支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;
下边要重点说的是分片广播策略,分片是指是调度中心以执行器为维度进行分片,将集群中的执行器标上序号:0,1,2,3...,广播是指每次调度会向集群中的所有执行器发送任务调度,请求中携带分片参数。
如下图:
每个执行器收到调度请求同时接收分片参数。
xxl-job支持动态扩容执行器集群从而动态增加分片数量,当有任务量增加可以部署更多的执行器到集群中,调度中心会动态修改分片的数量。
作业分片适用哪些场景呢?
- 分片任务场景:10个执行器的集群来处理10w条数据,每台机器只需要处理1w条数据,耗时降低10倍;
- 广播任务场景:广播执行器同时运行shell脚本、广播集群节点进行缓存更新等。
所以,广播分片方式不仅可以充分发挥每个执行器的能力,并且根据分片参数可以控制任务是否执行,最终灵活控制了执行器集群分布式处理任务。
使用说明:
"分片广播" 和普通任务开发流程一致,不同之处在于可以获取分片参数进行分片业务处理。
Java语言任务获取分片参数方式:
BEAN、GLUE模式(Java),可参考Sample示例执行器中的示例任务"ShardingJobHandler":
/*** 2、分片广播任务*/
@XxlJob("shardingJobHandler")
public void shardingJobHandler() throws Exception {// 分片序号,从0开始int shardIndex = XxlJobHelper.getShardIndex();// 分片总数int shardTotal = XxlJobHelper.getShardTotal();....
下边测试作业分片:
1、定义作业分片的任务方法
/*** 2、分片广播任务*/@XxlJob("shardingJobHandler")public void shardingJobHandler() throws Exception {// 分片参数int shardIndex = XxlJobHelper.getShardIndex();int shardTotal = XxlJobHelper.getShardTotal();log.info("分片参数:当前分片序号 = {}, 总分片数 = {}", shardIndex, shardTotal);
log.info("开始执行第"+shardIndex+"批任务");}
2、在调度中心添加任务
添加成功:
启动任务,观察日志
下边启动两个执行器实例,观察每个实例的执行情况
首先在nacos中配置media-service的本地优先配置:
#配置本地优先
spring:cloud:config:override-none: true
将media-service启动两个实例
两个实例的在启动时注意端口不能冲突:
实例1 在VM options处添加:-Dserver.port=63051 -Dxxl.job.executor.port=9998
实例2 在VM options处添加:-Dserver.port=63050 -Dxxl.job.executor.port=9999
例如:
启动两个实例
观察任务调度中心,稍等片刻执行器有两个
观察两个执行实例的日志:
另一实例的日志如下:
从日志可以看每个实例的分片序号不同。
如果其中一个执行器挂掉,只剩下一个执行器在工作,稍等片刻调用中心发现少了一个执行器将动态调整总分片数为1。
到此作业分片任务调试完成
相关文章:

XXL-JOB中间件【实现分布式任务调度】
目录 1:XXL-JOB介绍 2:搭建XXL-JOB 2.1:调度中心 2.2:执行器 2.3:执行任务 3:分片广播 1:XXL-JOB介绍 XXL-JOB是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学…...

Vue3+Element Plus环境搭建和一键切换明暗主题的配置
Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。而Element Plus是一款基于Vue3面向设计师和开发者的组件库。 最终效果: 环境搭建 已安装 16.0 或更高版本的 Node.js,终端: npm init vuelatest这一…...

Leetcode326. 3 的幂
Every day a leetcode 题目来源:326. 3 的幂 相似题目:342. 4的幂 解法1:递归 代码: /** lc appleetcode.cn id326 langcpp** [326] 3 的幂*/// lc codestart class Solution { public:bool isPowerOfThree(int n){if (n <…...
【运动规划算法项目实战】如何在栅格地图中实现Dijkstra算法
文章目录 简介一、算法介绍1.1 Dijkstra算法流程1.2 Dijkstra算法伪代码二、代码实现2.1 ROS实现2.2 RVIZ演示三、总结简介 Dijkstra算法是一种用于图中单源最短路径的贪心算法。在计算机科学和网络设计中广泛应用。该算法从起点开始,通过优先选择距离起点最近的未标记节点来…...

【算法】一文彻底搞懂ZAB算法
文章目录 什么是ZAB 算法?深入ZAB算法1. 消息广播两阶段提交ZAB消息广播过程 2. 崩溃恢复选举参数选举流程 ZAB算法需要解决的两大问题1. 已经被处理的消息不能丢2. 被丢弃的消息不能再次出现 最近需要设计一个分布式系统,需要一个中间件来存储共享的信息…...

【软考高级】2022年系统分析师综合知识
1.( )是从系统的应用领域而不是从系统用户的特定需要中得出的,它们可以是新的功能性需求,或者是对已有功能性需求的约束,或者是陈述特定的计算必须遵守的要求。 A.功能性需求 B. 用户需求 C.产品需求 D.领域需求 2.对于安全关键系…...
关于AI未来的思考和应用场景
关于AI未来的思考和应用场景 AI(人工智能)是当今最热门的技术领域之一,它已经在多个领域产生了深远的影响,如医疗、金融、制造业等。未来,AI将继续发展,并在更多领域产生重要的影响。 AI的未来发展方向有…...

智慧城市规划数字化管理:数字孪生技术的创新应用
随着智能城市的不断发展,数字孪生技术也开始在智慧城市的建设中得到了广泛应用。数字孪生作为一种数字化的复制技术,它可以模拟真实世界中的实体和过程。 在城市规划方面,数字孪生可以帮助城市规划师更加直观地了解城市的整体规划和发展趋势&…...
开心档之C++ 指针
C 指针 学习 C 的指针既简单又有趣。通过指针,可以简化一些 C 编程任务的执行,还有一些任务,如动态内存分配,没有指针是无法执行的。所以,想要成为一名优秀的 C 程序员,学习指针是很有必要的。 正如您所知…...

零基础搭建私人影音媒体平台【远程访问Jellyfin播放器】
文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 转载自内网穿透工具的文章:零基础搭建私人影音媒体平台【远程访问Jelly…...

Abstract Expressionist
古董地图画集 10大最有名的抽象艺术家 抽象表现主义是现代许多不同艺术思想和表达流派中最奇特的艺术运动之一。这场运动开始从社会变革中涌现出来,恰逢第二次世界大战的最后几周和几个月。 这一次,来自世界各地的人们开始欢迎在经历了多年有史以来最致…...

【郭东白架构课 模块二:创造价值】24|节点四:如何减少语义上的分歧?
你好,我是郭东白。上节课我们通过一个篇幅比较长的电商案例,详细展示了为什么在架构活动中会出现语义分歧。同时也描述了,架构师在统一语义这个环节中所要创造的真正价值是什么。即,看到不同角色之间语境的差异,然后通…...

windows下免费本地部署类ChatGpt的国产ChatGLM-6B
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 Chat…...

flask+opencv+实时滤镜(原图、黑白、怀旧、素描)
简介:滤镜,主要是用来实现图像的各种特殊效果。图像滤镜用于改变图像的视觉效果,使其具有特定的风格。下面是这三种滤镜的详细说明: 1、黑白(Grayscale):黑白滤镜将彩色图像转换为灰度图像&…...
【SCI征稿】极速送审,中科院2区(TOP)计算机算法类SCI,数据库稳定检索19年
算法类: 检索年份:数据库稳定检索19年 自引率:14.50% 国人占比:22.78% 期刊简介:IF:8.0-9.0,JCR1区,中科院2区(TOP) 检索情况:SCI&EI 双…...

1992-2022年31省GDP、第一产业增加值、第二产业增加值 第三产业增加值
1992-2022年31省GDP、第一产业增加值、第二产业增加值 第三产业增加值 1、时间:1992-2022年 2、范围:包括31省 3、指标:省GDP、省第一产业增加值、省第二产业增加值、省第三产业增加值 4、缺失情况说明:无缺失 5、来源&#…...
100种思维模型之万物系统思维模型-57
前面我们介绍过 “万物联系思维模型” ,即万物之间存有各种各样的联系,在解决问题时要看到事物之间的连接,并找到关键的连接,继而快速的解决问题。 01 何谓万物系统思维模型 一、万物系统思维 人的思维习惯, 一…...
Java 中的包装类是什么?如何使用包装类来操作基本数据类型(二十二)
Java 中的包装类是一种特殊的类,用来将基本数据类型(如 int、double、char 等)包装成对象。包装类的作用是可以让基本数据类型具有对象的特性,比如可以作为参数传递给泛型类或方法,可以调用对象的方法,可以…...

【Python入门】Pycharm的使用指南
前言 📕作者简介:热爱跑步的恒川,致力于C/C、Java、Python等多编程语言,热爱跑步,喜爱音乐的一位博主。 📗本文收录于Python零基础入门系列,本专栏主要内容为Python基础语法、判断、循环语句、函…...
python搭建HaIcon物联平台!
Python是一种高级编程语言,易于学习和理解。它在各个领域都有着广泛的应用,例如数据科学、机器学习、爬虫等。 在Python的强大功能之外,Python还有着丰富的第三方库和框架,其中之一就是HaIcon。HaIcon是一种基于Python的物联网平台,它提供了完整的解决方案,包括设备管理…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...