当前位置: 首页 > news >正文

洛谷 子集积 题解

题目

P1 背包

子集积 > m >m >m 个数并不好求,考虑子集积 ≤ m \le m m 的个数 x x x,答案即为 ( 2 n − x ) (2^n - x) (2nx)

对于子集积 ≤ m \le m m 的个数,可以化为 0-1 背包问题做, f i , j f_{i,j} fi,j 表示前 i i i 个数,子集积为 j j j 的个数,有:

f i , j = ∑ j = 1 m f i − 1 , j a i f_{i,j}=\sum \limits_{j=1}^{m} f_{i-1,\frac {j} {a_i}} fi,j=j=1mfi1,aij j j j a i a_i ai 的倍数)。

背包问题常规地去掉一维: f j f_j fj 表示子集积为 j j j 的个数:

f j = ∑ j = 1 m f j a i f_j=\sum \limits_{j=1}^{m} f_{\frac {j} {a_i}} fj=j=1mfaij j j j a i a_i ai 的倍数)。

	cin >> n >> m;for(int i=1; i<=n; i++) cin >> a[i];f[1] = 1;for(int i=1; i<=n; i++)for(int j=(m / a[i]) * a[i]; j>=a[i]; j-=a[i])f[j] += f[j / a[i]], f[j] %= mod;int sum = qpow(2, n);for(int i=1; i<=m; i++)sum -= f[i],  sum = ((sum % mod) + mod) % mod;cout << sum;

时间复杂度 O ( n × ∑ i = 1 n m a i ) O(n \times \sum\limits_{i=1}^{n} {\frac {m} {a_i}}) O(n×i=1naim) ,最坏情况下 O ( n m ) O(nm) O(nm)

P2 优化

优化 1

若序列中有 100 100 100 1 1 1 ,然而任意多个 1 1 1 不会对子集积产生影响,我们只需要在方案数中乘以 2 100 2^{100} 2100 即可。

	...int sum = qpow(2, n);for(int i=1; i<=m; i++)sum -= (f[i] * qpow(2, cnt[1])) % mod,  sum = ((sum % mod) + mod) % mod;cout << sum;

优化 2

时间复杂度高的原因在于重复的计算:若有 100 100 100 2 2 2 ,我们会将第 2 , 3 2,3 2,3 2 2 2 、第 3 , 4 3,4 3,4 2 2 2 算了两次。我们应该只关心是几个 2 2 2 ,而不关心是哪几个 2 2 2

对于任意一个数 x x x ,设其出现了 t t t 次,我们可以对 x 1 , x 2 , . . . , x t x^1,x^2,...,x^t x1,x2,...,xt 分别计算,使用 x i x^i xi 计算贡献时乘以 C t i C_{t}^i Cti, 即 :

f j = ∑ i = 1 t ( f j x i × C t i ) f_j=\sum\limits_{i=1}^{t} ( f_{\frac {j} {x^i}} \times C_t^i) fj=i=1t(fxij×Cti) j j j x k x^k xk 的倍数)。

时间复杂度 O ( n ∑ i = 1 n ( log ⁡ a i m ) ) O(n \sum\limits_{i=1}^{n} (\log_{a_i}{m})) O(ni=1n(logaim)),最坏情况下 O ( n log ⁡ m ) O(n \log m) O(nlogm)

注意: 这里与多重背包的二进制拆分拆成多个物品不同,而是优化了对于一个物品的计算方式。

代码

相关文章:

洛谷 子集积 题解

题目 P1 背包 子集积 > m >m >m 个数并不好求&#xff0c;考虑子集积 ≤ m \le m ≤m 的个数 x x x&#xff0c;答案即为 ( 2 n − x ) (2^n - x) (2n−x)。 对于子集积 ≤ m \le m ≤m 的个数&#xff0c;可以化为 0-1 背包问题做&#xff0c; f i , j f_{i,…...

Boost笔记 1:下载、编译、安装、测试

1. 下载 当前版本是1.82&#xff0c;下载链接&#xff1a; https://boostorg.jfrog.io/artifactory/main/release/1.82.0/source/ 2. 安装编译依赖库 本地环境是Ubuntu 22.04&#xff0c;需要安装以下依赖库&#xff0c;部分影响boost相关功能的开启&#xff0c;部分影响编译…...

tiechui_lesson01_入口函数和卸载函数

主要讲解入口函数和卸载函数。 #include <ntifs.h>VOID nothing(HANDLE ppid, HANDLE mypid, BOOLEAN bcreate) {UNREFERENCED_PARAMETER(ppid);UNREFERENCED_PARAMETER(mypid);UNREFERENCED_PARAMETER(bcreate);DbgPrint("processNotify\n"); }VOID DriverU…...

密码学【java】初探究加密方式之非对称加密

文章目录 非对称加密1 常见算法2 生成公钥和私钥3 私钥加密4 私钥加密 公钥解密5 公钥和私钥的保存和读取5.1 **保存公钥和私钥**5.2 读取公钥和私钥 非对称加密 非对称加密算法又称现代加密算法。非对称加密是计算机通信安全的基石&#xff0c;保证了加密数据不会被破解。与对…...

网络安全和黑客技能:15本必读书籍推荐

前言 网络安全和黑客技能紧密相连。想要有效地防范黑客攻击&#xff0c;了解黑客的技能和思维方式非常重要。而要想成为一名合格的白帽黑客&#xff0c;也需要深入理解网络安全的基本原理和最佳实践。本文将介绍15本网络安全和黑客书籍&#xff0c;既包括了防范黑客攻击的指南…...

电话号码的字母组合

题目&#xff1a;17. 电话号码的字母组合 - 力扣&#xff08;Leetcode&#xff09; 思路&#xff1a; 给定一个电话号码字符串 digits&#xff0c;须输出它所能表示的所有字母组合。我们可以先定义一个数字字符到字母表的映射表 numToStr&#xff0c;然后再用 Combine 函数递归…...

PAT A1032 Sharing

1032 Sharing 分数 25 作者 CHEN, Yue 单位 浙江大学 To store English words, one method is to use linked lists and store a word letter by letter. To save some space, we may let the words share the same sublist if they share the same suffix. For example, l…...

Git常见问题汇总

问题&#xff1a;Your branch is ahead of ‘origin/master’ by 1 commit 原因&#xff1a;你的本地分支高于远程仓库一次提交, 同步更新下&#xff0c;执行命令&#xff1a; git push origin master问题&#xff1a;warning: LF will be replaced by CRLF in main.lua The …...

设计模式之代理模式(静态代理动态代理)

目录 1、什么是代理模式 2、代理模式的结构 3、代理模式的实现 3.1 静态代理和动态代理概念 3.2 静态代理 3.3 动态搭理 3.3.1 代码实现 3.3.2 Proxy类讲解 4、动态代理VS静态代理 5、代理模式优缺点 1、什么是代理模式 由于某些原因需要给某对象提供一个代理以控制对…...

Java并发编程基础知识概述

前言 在现代计算机系统和服务器中&#xff0c;多线程并行执行已经成为常态&#xff0c;而且并发编程能够充分利用系统资源&#xff0c;提高程序处理效率和质量。因此&#xff0c;Java并发编程是Java程序员必须掌握的重要技能之一。 线程和进程 在操作系统中&#xff0c;进程是…...

Redis超详细入门手册教程!还不快来看看?

地址&#xff1a; RedisRedis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures …https://redis.io/ 1&#xff1a;NoSQL简介 1.1&#xff1a;数据库应用的演变历程 单…...

代码随想录算法训练营第四十九天| 121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

文章目录 121. 买卖股票的最佳时机122.买卖股票的最佳时机II 121. 买卖股票的最佳时机 为什么定义dp数组为二维数组&#xff1f; dp数组定义&#xff0c;dp(i)[0] 表示第i天持有股票所得最多现金&#xff0c;dp(i)[1]表示第i天不持有股票的状态&#xff08;未必当前卖出&#x…...

零基础如何学习挖漏洞?看这篇就够了【网络安全】

前言 有不少阅读过我文章的伙伴都知道&#xff0c;我从事网络安全行业已经好几年&#xff0c;积累了丰富的经验和技能。在这段时间里&#xff0c;我参与了多个实际项目的规划和实施&#xff0c;成功防范了各种网络攻击和漏洞利用&#xff0c;提高了安全防护水平。 也有很多小…...

Twitter 推荐算法底有多牛? 已斩获11.7K star

点击上方“Github中文社区”&#xff0c;关注 看Github&#xff0c;每天提升第070期分享 &#xff0c;作者&#xff1a;Huber | Github中文社区 大家好&#xff0c;我是Huber。 在美国当地时间 3 月 31 日&#xff0c;马斯克履行当初的诺言&#xff0c;他宣布了 Twitter 算法的…...

看过这篇文章,读懂数据分析

一、为什么需要数据分析 数据分析的重要性不言而喻&#xff0c;没有数据&#xff0c;就是感性。数据不会被观点打败&#xff0c;数据只能被数据打败。我们现在妥妥地已经进入了数据时代。 量化IT投资成效&#xff0c;以数据驱动决策 站在公司或者决策者角度&#xff0c;数据最…...

[计算机图形学]光场,颜色与感知(前瞻预习/复习回顾)

一、Light Field / Lumigraph—光场 1.我们看到的是什么 我们的眼睛能够把3D世界转换为2D的成像信号被我们感知&#xff0c;如上面第一幅图&#xff0c;这就是我们看到整个世界的过程&#xff0c;那么如果我们把之前记录的光的信息都完美的放在一个幕布上&#xff0c;那么我们…...

L4公司进军辅助驾驶,放话无图也能跑遍中国

作者 | Amy 编辑 | 德新 高阶智能驾驶走向规模量产&#xff0c;高精地图成为关键的门槛之一。今年&#xff0c;多家车企和智驾公司都喊出「不依赖高精地图&#xff0c;快速大规模落地」的口号。 华为、小鹏、元戎以及毫末等&#xff0c;可能是最快在国内量产 无高精图智…...

【Java笔试强训 17】

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔&#x1f93a;&#x1f93a;&#x1f93a; 目录 一、选择题 二、编程题 &#x1f525;杨辉三角…...

【IPv6】基本概念及字段

IPV4知识点&#xff1a; 字段值 IPv4字段共 字段值解释Version版本版本字段&#xff0c;可以区分V4和V6版本&#xff0c;V4是0100&#xff0c;V6是0110&#xff0c;需要注意的是V4和V6头部除了版本字段位置相同外&#xff0c;其他都是不一样的&#xff0c;因此两个协议不能直…...

数据库中的 Schema 变更实现

线上沙龙-技术流第 30 期营业啦 05月09日&#xff08;周二&#xff09;19:30 KaiwuDB - B站直播间 传统数据库操作 Schema 变更时&#xff0c;第一步便是锁表&#xff0c;需持续到 Schema 变更操作完成。这样的做法虽然实现简单&#xff0c;无需考虑事务并发带来的影响&#…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...