当前位置: 首页 > news >正文

工地烟火AI监控识别分析系统 yolov7

工地烟火AI监控识别分析系统通过yolov7网络模型技术,工地烟火AI监控识别分析系统对工地或者厂区现场监控区域内的烟火进行实时分析报警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

YOLOv7 研究团队提出了基于 ELAN 的扩展 E-ELAN,其主要架构新的 E-ELAN 完全没有改变原有架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,改进参数的使用和计算效率。无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。新提出的 E-ELAN 使用 expand、shuffle、merge cardinality 在不破坏原有梯度路径的情况下让网络的学习能力不断增强。

在架构方面,E-ELAN 只改变了计算块的架构,而过渡层(transition layer)的架构完全没有改变。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。因此,对基于串联的模型,我们不能单独分析不同的扩展因子,而必须一起考虑。该研究提,即在对基于级联的模型进行扩展时,只需要对计算块中的深度进行扩展,其余传输层进行相应的宽度扩展。这种复合扩展方法可以保持模型在初始设计时的特性和最佳结构。


 

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

相关文章:

工地烟火AI监控识别分析系统 yolov7

工地烟火AI监控识别分析系统通过yolov7网络模型技术,工地烟火AI监控识别分析系统对工地或者厂区现场监控区域内的烟火进行实时分析报警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备…...

MATLAB算法实战应用案例精讲-【人工智能】对比学习(概念篇)(补充篇)

目录 前言 几个高频面试题目 基于对比学习(ContrastiveLearning)的文本表示模型【为什么】能学到文本【相似】度? 为什么对比学习能学到很好的语义相似度? 那么如何评价这个表示空间的质量呢? 知识储备 监督学习和非监督学习 算法原理…...

代码随想录算法训练营第三十一天 | 贪心1,想不到怎么找局部最优就做不出来

贪心算法理论基础 代码随想录 (programmercarl.com) 贪心算法理论基础!_哔哩哔哩_bilibili 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额&#xff…...

【SVN】版本控制管理的文件(夹)如何重命名

目录 一、前言二、操作步骤1. 使用SVN重命名(SVN rename)2. 输入新名称3. 确定重命名4. 立刻进行一次提交(commit)5. 补充 三、可能遇到的问题1. 情况一2. 情况二3. 情况三 一、前言 如果只是在本地的文件系统中修改SVN中的文件&a…...

必须包含数字,字母组合的密码正则表达式

输入要求:由数字和字母组成,并且要同时含有数字和字母,且长度要在2-64位之间。 ^(?![0-9]$)(?![a-zA-Z]$)[0-9A-Za-z]{2,64}$ 分开来注释一下: ^ 匹配一行的开头位置 (?![0-9]$) 预测该位置后面不全是数字 (?![a-zA-Z]$) 预…...

JavaScript:栈和对列

文章目录 栈和对列Js 有栈与队列吗20. 有效的括号 - 力扣(LeetCode)思路 1047. 删除字符串中的所有相邻重复项 - 力扣(LeetCode)思路代码分析array.join() 操作打印const s of str 操作遍历 150. 逆波兰表达式求值 - 力扣&#xf…...

[数据库系统] 一、创建表以及使用主键约束(educoder)

1.任务:在数据库中创建一个表。 2.需要掌握: 如何在指定数据库中创建表。 知识点:如何在指定数据库中创建表。 我们先来了解一下在数据库中创建表的规则: CREATE TABLE 表名(字段名,数据类型,字段名,数据类型,.....) 例如&…...

《走进对象村4》之面向对象的第一大特性——封装

文章目录 🚀文章导读1、封装的概念2、访问限定修饰符3、如何进行封装4、封装的优点: 🚀文章导读 在本篇文章中,将详细的对封装进行总结,文章仅仅是个人的一些理解,如果有错误的地方,还望指出看完…...

罗马数字转整数、整数转罗马数字----2023/5/4

罗马数字转整数----2023/5/4 1.罗马数字转整数 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D …...

2023-05-04:用go语言重写ffmpeg的scaling_video.c示例,用于实现视频缩放(Scaling)功能。

2023-05-04:用go语言重写ffmpeg的scaling_video.c示例,用于实现视频缩放(Scaling)功能。 答案2023-05-04: 这段代码实现了使用 libswscale 库进行视频缩放的功能。下面是程序的主要流程: 1.获取命令行参…...

QT Android QTextEdit 复制粘贴文本后出现多余数据问题

目录 问题原因解决方法 问题 QT Android QTextEdit 长按选中文本后,点击复制,然后粘贴到手机便签或者QQ中,出现多余数据 例如,要复制的文本为 只因你太美 但实际在便签中粘贴后的文本为 只因你太美 p, li { white-space: pre-wra…...

知识变现海哥:你为什么努力却不富有,大概率是你不懂这个道理

要有价值观念,要有交换思维。商业的本质都是基于价值交换,你能为别人提供多少价值,你就能赚多少米,你帮助别人处理的问题越多你越有价值,你能成就多少人你就能被多少人成就。这是商业行为的底层逻辑。 你没赚到米 一是…...

【Mybatis】增删改查

1.添加相应的jar包 2.创建持久化类 在src目录下创建一个名为com.mybatis.po的包 创建持久化类MyUser,包含三个属性(uid,uname,usex) package com.mybatis.po; /***springtest数据库中user表的持久化类*/ public class MyUser {private Integer uid;//主键private…...

20230504----重返学习-vue2项目-跳转拦截-重定向并返回前一页-使用vuex调用接口-全选与全不选-总价计算

day-061-sixty-one-20230504-vue2项目-跳转拦截-重定向并返回前一页-使用vuex调用接口-全选与全不选-总价计算 vue2项目 跳转拦截 设置跳转拦截,比如在用户没token时,不能进入具体详情页,而是进入登录页进行登录。 跳转拦截具体思路 前端…...

(异或相消)猫猫数字异或和

E - Red Scarf (atcoder.jp) 刚入坑写的一道题被我拉出来对比分析了 我的思路: 垃圾运气选手凭借直觉乱搞猜出来的,没有思路。 题解思路: 由问题陈述中XOR的定义,我们可以看出计算3个或更多整数的XOR可以以任意顺序进行&#…...

树脂塞孔有哪些优缺点及应用?

树脂塞孔的概述 树脂塞孔就是利用导电或者非导电树脂,通过印刷,利用一切可能的方式,在机械通孔、机械盲埋孔等各种类型的孔内进行填充,实现塞孔的目的。 树脂塞孔的目的 1 树脂填充各种盲埋孔之后,利于层压的真空下…...

【Robot Framework】RF关键字大全

收录工作当中最常用的Robot Framework关键字 内容较多,可以CtrlF快速搜索自己想要的 1. RF循环使用(FOR循环) {list1} create list LOG TXT INI INF C CPP JAVA JS CSS LRC H ASM S ASP FOR ${file_type} IN {list1} log 构造请求参数 ${t…...

Xilinx Artix-7【XC7A35T-2CSG324I】【XC7A35T-1CSG324I】成本与收发器优化的FPGA器件

产品介绍: Xilinx Artix -7系列 FPGA 重新定义了成本敏感型解决方案,功耗比上一代产品降低了一半,同时为高带宽应用提供一流的收发器和信号处理能力。这些设备基于 28 纳米 HPL 工艺构建,提供一流的性能功耗比。与 MicroBlaze™ 软…...

K8S之自定义Controller

简介 在此之前我们先来了解下kubernetes的两个概念"声明式API"和"控制器模式"。"声明式API"核心原理就是当用户向kubernetes提交了一个API对象的描述后,Kubernetes会负责为你保证整个集群里各项资源的状态,都与你的API对象…...

无线电相关的SCI期刊有哪些? - 易智编译EaseEditing

以下是几个无线电相关的SCI期刊: IEEE Transactions on Wireless Communications: 这是一个IEEE无线通信协会的期刊,主要涵盖了无线通信领域的最新研究进展,包括无线网络,通信系统和信号处理等方面。 IEEE Transacti…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...