Addictive Multiplicative in NN
特征交叉是特征工程中的重要环节,在以表格型(或结构化)数据为输入的建模中起到了很关键的作用。
特征交互的作用,一是尽可能挖掘对目标有效的模式、特征,二是具有较好的可解释性,三是能够将对数据的洞见引入建模中。搜广推算是一个典型的以表格型数据为输入的场景了,长久以来都对特征的构建很重视。学界和业界针对特征交叉也是做了很多工作,各种特征交叉方案层出不穷,如GBDT+LR、FM、Wide&Deep、DeepFM、DCN、xDeepFM等,可见特征交叉之重。当然,现在深度学习的推广,场景数据来源也更多样化和复杂化,特征工程的作用势微、成本增大。这里主要对Addictive和Multiplicative两种类型的交叉做一个回顾和介绍。当然,并不局限于推荐系统中。
对于两个特征 x 1 , x 2 x_1, x_2 x1,x2,它们的加性操作为: a x 1 + b x 2 + c a x_1 + b x_2 + c ax1+bx2+c,可以看出这很类似于逻辑回归中的操作,乘性操作为: a x 1 x 2 + c a x_1 x_2 + c ax1x2+c。从这两种操作的次数来看,加性操作是一阶的,乘性操作是二阶的。因此,FM在LR地基础上引入了不同特征相乘后的交叉特征,即包含了更高阶的特征。
更广泛地来看,脱离了推荐场景后,如果我们有两个输入 x , z x, z x,z,输入可以是标量或者向量,两个输入的特征交叉(此时或许可以给一个更泛化的名字,融合?)可以描述为:
y = ϕ ( x , z ) y = \phi(x, z) y=ϕ(x,z)
在论文On Multiplicative Integration with
Recurrent Neural Networks中,加性操作为: y = W x + U z + b y = W x + U z + b y=Wx+Uz+b,乘性操作为: y = W x ⊙ U z + b y = W x \odot U z + b y=Wx⊙Uz+b,其中 ⊙ \odot ⊙为Hardmard product。在乘性操作中, W x W x Wx和 U z U z Uz可以互相约束(控制),这一操作在LSTM和GRU中都很常见。除了融合方式上的不同,加性和乘性还有什么不同呢?这篇文章还从梯度的角度进行了分析,简单来说就是在循环神经网络中乘性操作能缓解梯度消失和爆炸问题。
偶然发现一篇从统计视角介绍变量间交互作用的博文:交互作用: 相加交互,相乘交互。在这篇博文里,从统计的角度讨论了两个变量间的交互,即相互影响,讨论了相加交互和相乘交互。插一嘴,如果沿着这个讨论下去,或许和因果推断更接近了。

相关文章:

Addictive Multiplicative in NN
特征交叉是特征工程中的重要环节,在以表格型(或结构化)数据为输入的建模中起到了很关键的作用。 特征交互的作用,一是尽可能挖掘对目标有效的模式、特征,二是具有较好的可解释性,三是能够将对数据的洞见引…...

LeetCode 1206. 实现跳表
不使用任何库函数,设计一个跳表。 跳表是在 O(log(n)) 时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。 例如,一个跳表包…...

离散数学_九章:关系(2)
9.2 n元关系及其应用 1、n元关系,关系的域,关系的阶2、数据库和关系 1. 数据库 2. 主键 3. 复合主键 3、n元关系的运算 1. 选择运算 (Select) 2. 投影运算 (Project) 3. 连接运算 (Join) n元关系:两个以上集合的元素间的关系 1、n元关系…...
[ubuntu][原创]通过apt方式去安装libnccl库
ubuntu18.04版本安装流程: wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://develo…...

YonLinker连接集成平台构建新一代产业互联根基
近日,由用友公司主办的“2023用友BIP技术大会“在用友产业园(北京)盛大召开,用友介绍了更懂企业业务的用友BIP-iuap平台,并发布了全面数智化能力体系,助力企业升级数智化底座,加强加速数智化推进…...
泛型的详解
泛型的理解和好处 首先我们先来看看泛型的好处 1)编译时,检查添加元素的类型,提高了安全性 2)减少了类型转换的次数,提高效率[说明] 不使用泛型 Dog -> Object -> Dog//放入到ArrayList 会先转成Object,在取出时&#x…...

用科技创造未来!流辰信息技术助您实现高效办公
随着社会的迅猛发展,科技的力量无处不见。它正在悄悄地改变整个社会,让人类变得进步和文明,让生活变得便捷和高效。在办公自动化强劲发展的今天,流辰信息技术让通信业、电网、汽车、物流等领域的企业实现了高效办公,数…...
基于R语言APSIM模型
随着数字农业和智慧农业的发展,基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。 APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物…...

块状链表实现BigString大字符串操作(golang)
前言 块状链表是介于链表和数组之间的数据结构,能够在 O ( n ) O(\sqrt{n}) O(n )时间内完成插入、删除、访问操作。 数据结构如图所示。假设最大容量为 n n n, 则它有一个长度为 s n s\sqrt{n} sn 的链表。链表中每个结点是一个长度为 2 n 2 \times \sqrt{…...
项目问题记录(持续更新)
1.在 yarn install的时候报 error achrinza/node-ipc9.2.2: The engine "node" is incompatible with this module. Expected version "8 || 10 || 12 || 14 || 16 || 17". Got "20.1.0" error Found incompatible module.需要执行 yarn config…...

Linux的进程
目录 一、进程占用的内存资源 二、进程的系统环境 三、进程一直在切换 四、父进程和子进程 五、进程状态 六、查看进程 1.ps -ef 列出所有进程 2.ps -lax 列出所有进程 3.ps aux列出所有进程 4.树形列出所有进程 七、作业(用来查看管理进程) …...

与其焦虑被 AI 取代或猜测前端是否已死, 不如看看 vertical-align 扎实你的基础!!!
与其焦虑被 AI 取代或猜测前端是否已死, 不如看看 vertical-align 扎实你的基础!!! vertical-align 设置 display 值为 inline, inline-block 和 table-cell 的元素竖直对齐方式. 从 line-height: normal 究竟是多高说起 我们先来看一段代码, 分析一下为什么第二行的行高, 也就…...
路由、交换机、集线器、DNS服务器、广域网/局域网、端口、MTU
前言:网络名词术语解析(自行阅读扫盲),推荐大家去读户根勤的《网络是怎样连接的》 路由(route): 数据包从源地址到目的地址所经过的路径,由一系列路由节点组成。某个路由节点为数据包选择投递方向的选路过程。 路由器工作原理 路…...

在全志V851S开发板上进行屏幕触摸适配
1.修改屏幕驱动 从ft6236 (删掉,不要保留),改为下面的 路径:/home/wells/tina-v853-open/tina-v853-open/device/config/chips/v851s/configs/lizard/board.dts(注意路径,要设置为自己的实际路…...
字符串拷贝时的内存重叠问题
字符串拷贝时的内存重叠问题 1.什么是内存重叠 拷贝的目的地址在源地址的范围内,有重叠。 如在写程序的过程中,我们用到的strcpy这个拷贝函数,在这个函数中我们定义一个目的地址,一个源地址,在拷贝的过程中如果内存重…...

告别PPT手残党!这6款AI神器,让你秒变PPT王者!
如果你是一个PPT手残党,每每制作PPT总是让你焦头烂额,那么你一定需要这篇幽默拉风的推广文案! 我向你保证,这篇文案将帮助你发现6款AI自动生成PPT的神器,让你告别PPT手残党的身份,成为一名PPT王者。 无论…...
JVM配置与优化
参考: JVM内存分区及作用(JDK8) https://blog.csdn.net/BigBug_500/article/details/104734957 java 进程占用系统内存过高分析 https://blog.csdn.net/fxh13579/article/details/104754340 Java之jvm和线程的内存 https://blog.csdn.ne…...

电力系统储能调峰、调频模型研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

C++基础之类、对象一(类的定义,作用域、this指针)
目录 面向对象的编程 类的引入 简介 类的定义 简介 访问限定符 命名规则 封装 简介 类的作用域 类的大小及存储模型 this指针 简介 面向对象的编程 C与C语言不同,C是面向对象的编程,那么什么是面向对象的编程呢? C语言编程,规定…...

javaScript---设计模式-封装与对象
目录 1、封装对象时的设计模式 2、基本结构与应用示例 2.1 工厂模式 2.2 建造者模式 2.3 单例模式 封装的目的:①定义变量不会污染外部;②能作为一个模块调用;③遵循开闭原则。 好的封装(不可见、留接口):①…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...

【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...